Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computing codimensions and generic canonical forms for generalized matrix products
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (UMIT)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (UMIT)ORCID-id: 0000-0002-4675-7434
2011 (engelsk)Inngår i: The Electronic Journal of Linear Algebra, ISSN 1537-9582, E-ISSN 1081-3810, Vol. 22, s. 277-309Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A generalized matrix product can be formally written as Lambda(sp)(p) Lambda(sp-1)(p-1) ... Lambda(s2)(2) Lambda(s1)(1) where s(i) is an element of {- 1,+ 1} and ( A(1), ..., A(p)) is a tuple of ( possibly rectangular) matrices of suitable dimensions. The periodic eigenvalue problem related to such a product represents a nontrivial extension of generalized eigenvalue and singular value problems. While the classification of generalized matrix products under eigenvalue-preserving similarity transformations and the corresponding canonical forms have been known since the 1970's, finding generic canonical forms has remained an open problem. In this paper, we aim at such generic forms by computing the codimension of the orbit generated by all similarity transformations of a given generalized matrix product. This can be reduced to computing the so called cointeractions between two different blocks in the canonical form. A number of techniques are applied to keep the number of possibilities for different types of cointeractions limited. Nevertheless, the matter remains highly technical; we therefore also provide a computer program for finding the codimension of a canonical form, based on the formulas developed in this paper. A few examples illustrate how our results can be used to determine the generic canonical form of least codimension. Moreover, we describe an algorithm and provide software for extracting the generically regular part of a generalized matrix product.

sted, utgiver, år, opplag, sider
2011. Vol. 22, s. 277-309
Emneord [en]
matrix product, periodic eigenvalue problem, canonical form, generic kronecker
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-51038DOI: 10.13001/1081-3810.1440ISI: 000288598500005OAI: oai:DiVA.org:umu-51038DiVA, id: diva2:474332
Tilgjengelig fra: 2012-01-09 Laget: 2012-01-09 Sist oppdatert: 2022-03-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstURL

Person

Kågström, BoKarlsson, Lars

Søk i DiVA

Av forfatter/redaktør
Kågström, BoKarlsson, Lars
Av organisasjonen
I samme tidsskrift
The Electronic Journal of Linear Algebra

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 455 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf