Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-risk regions and outbreak modelling of tularemia in humans
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). (Arcum)ORCID-id: 0000-0002-0768-8405
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Epidemiology and Infection, ISSN 0950-2688, E-ISSN 1469-4409, Vol. 145, nr 3, s. 482-490Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sweden reports large and variable numbers of human tularemia cases, but the high-risk regions are anecdotally defined and factors explaining annual variations are poorly understood. Here, high-risk regions were identified by spatial cluster analysis on disease surveillance data for 1984-2012. Negative binomial regression with five previously validated predictors (including predicted mosquito abundance and predictors based on local weather data) was used to model the annual number of tularemia cases within the high-risk regions. Seven high-risk regions were identified with annual incidences of 3.8-44 cases/100 000 inhabitants, accounting for 56.4% of the tularemia cases but only 9.3% of Sweden's population. For all high-risk regions, most cases occurred between July and September. The regression models explained the annual variation of tularemia cases within most high-risk regions and discriminated between years with and without outbreaks. In conclusion, tularemia in Sweden is concentrated in a few high-risk regions and shows high annual and seasonal variations. We present reproducible methods for identifying tularemia high-risk regions and modelling tularemia cases within these regions. The results may help health authorities to target populations at risk and lay the foundation for developing an early warning system for outbreaks.

Ort, förlag, år, upplaga, sidor
CAMBRIDGE UNIV PRESS , 2017. Vol. 145, nr 3, s. 482-490
Nyckelord [en]
Epidemiology, modelling, spatial cluster analysis, tularemia
Nationell ämneskategori
Arbetsmedicin och miljömedicin
Identifikatorer
URN: urn:nbn:se:umu:diva-132814DOI: 10.1017/S0950268816002478ISI: 000393759000010PubMedID: 27806741Scopus ID: 2-s2.0-84994162551OAI: oai:DiVA.org:umu-132814DiVA, id: diva2:1092943
Tillgänglig från: 2017-05-04 Skapad: 2017-05-04 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Desvars-Larrive, AmélieSjöstedt, A.Ryden, Patrik

Sök vidare i DiVA

Av författaren/redaktören
Desvars-Larrive, AmélieSjöstedt, A.Ryden, Patrik
Av organisationen
Klinisk bakteriologiMolekylär Infektionsmedicin, Sverige (MIMS)Institutionen för matematik och matematisk statistik
I samma tidskrift
Epidemiology and Infection
Arbetsmedicin och miljömedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1008 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf