Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stainless Steel as A Bi-Functional Electrocatalyst – A Top-Down Approach
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-5080-8273
2019 (Engelska)Ingår i: Materials, E-ISSN 1996-1944, Vol. 12, nr 13, artikel-id 2128Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

For a hydrogen economy to be viable, clean and economical hydrogen production methods are vital. Electrolysis of water is a promising hydrogen production technique with zero emissions, but suffer from relatively high production costs. In order to make electrolysis of water sustainable, abundant, and efficient materials has to replace expensive and scarce noble metals as electrocatalysts in the reaction cells. Herein, we study activated stainless steel as a bi-functional electrocatalyst for the full water splitting reaction by taking advantage of nickel and iron suppressed within the bulk. The final electrocatalyst consists of a stainless steel mesh with a modified surface of layered NiFe nanosheets. By using a top down approach, the nanosheets stay well anchored to the surface and maintain an excellent electrical connection to the bulk structure. At ambient temperature, the activated stainless steel electrodes produce 10 mA/cm(2) at a cell voltage of 1.78 V and display an onset for water splitting at 1.68 V in 1M KOH, which is close to benchmarking nanosized catalysts. Furthermore, we use a scalable activation method using no externally added electrocatalyst, which could be a practical and cheap alternative to traditionally catalyst-coated electrodes.

Ort, förlag, år, upplaga, sidor
MDPI , 2019. Vol. 12, nr 13, artikel-id 2128
Nyckelord [en]
water splitting, electrolysis, bifunctional, electrocatalysts, hydrogen evolution reaction, oxygen olution reaction, sustainable, stainless steel, nano
Nationell ämneskategori
Annan kemiteknik Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-162337DOI: 10.3390/ma12132128ISI: 000477043900092PubMedID: 31269744Scopus ID: 2-s2.0-85068826298OAI: oai:DiVA.org:umu-162337DiVA, id: diva2:1343456
Tillgänglig från: 2019-08-16 Skapad: 2019-08-16 Senast uppdaterad: 2024-07-04Bibliografiskt granskad
Ingår i avhandling
1. Electrocatalysts for sustainable hydrogen energy: disordered and heterogeneous nanomaterials
Öppna denna publikation i ny flik eller fönster >>Electrocatalysts for sustainable hydrogen energy: disordered and heterogeneous nanomaterials
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

With the current global greenhouse gas emissions, our remaining carbon budget is depleted in only 7 years. After that, several biophysical systems are predicted to collapse such as the arctic ice, coral reefs and the permafrost, leading to potentially irreversible consequences. Our emissions are strongly correlated to access of energy and even if we are aware of the planetary emergency today, our emissions still continue to grow. Electrical vehicles have the possibility to reduce the emissions in the transportation sector significantly. However, these vehicles are still expensive and impractical for long-distance or heavy transportation. While political actions and technological development are essential to keep prices down, the driving dis- tance can be increased by replacing the batteries for onboard electricity production. 

In hydrogen fuel cells, electricity is produced by combining hydrogen gas (H2) and oxygen with only water as the by-product and if employed in electrical vehicles, distances of 500 km are enabled with a refueling time in 5 minutes. For other uses than in vehicles, H2 is also promising for large-scale electricity storage and for several industrial processes such as manufacturing CO2-free steel, ammonia and synthetic fuels. However, today most H2 production methods relies on fossil fuels and releases huge amounts of CO2. 

Electrolysis of water is an alternative production method where H2, along with oxygen are produced from water. To split the water, electricity has to be added and if renewable energy sources are used, the method has zero emissions and is considered most promising for a sustainable hydrogen energy economy. The tech- nique is relatively expensive compared to the fossil fuel-based methods and relies on rare noble metals such as platinum as catalysts for decreasing the required energy to split water. For large scale productions, these metals need to be replaced by more sustainable and abundant catalysts to lower the cost and minimize the environmental impacts. 

In this thesis we have investigated such candidates for the water splitting reaction but also to some extent for the oxygen reduction reaction in fuel cells. By combining theory and experiments we hope to aid in the development and facilitate a transition to clean hydrogen energy. We find among other things that i) defects in catalytic materials plays a significant role the performance and efficiency, and that ii) heterogeneity influence the adsorption energies of reaction intermediates and hence the catalytic efficiency and iii) while defects are not often studied for electrocatalytic reactions, these may inspire for novel materials in the future. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2021. s. 88
Nyckelord
Water splitting, Electrochemistry, Nanomaterials, Density functional theory, Hydrogen evolution, MoS2, Fuel cell
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
nanomaterial; fysik; fysikalisk kemi
Identifikatorer
urn:nbn:se:umu:diva-180130 (URN)978-91-7855-482-9 (ISBN)978-91-7855-481-2 (ISBN)
Disputation
2021-03-11, BIO.A.206 – Aula Anatomica, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-02-18 Skapad: 2021-02-15 Senast uppdaterad: 2021-02-16Bibliografiskt granskad

Open Access i DiVA

fulltext(4870 kB)265 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4870 kBChecksumma SHA-512
3656af7e6cf2cd465f2a6acab6946a31fbcc964cd51b4aabae2f4d26f6b00f10f1bdf30fdb7197311f910c043788dd4be90bb767c024b7cdc87ad7ef92ee510e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Ekspong, JoakimWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Ekspong, JoakimWågberg, Thomas
Av organisationen
Institutionen för fysik
I samma tidskrift
Materials
Annan kemiteknikDen kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 265 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1045 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf