Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, s. 1664-1670Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Road traffic congestion in urban environments poses an increasingly complex challenge of detection, profiling and prediction. Although public policy promotes transport alternatives and new infrastructure, traffic congestion is highly prevalent and continues to be the lead cause for numerous social, economic and environmental issues. Although a significant volume of research has been reported on road traffic prediction, profiling of traffic has received much less attention. In this paper we address two key problems in traffic profiling by proposing a novel unsupervised incremental learning approach for road traffic congestion detection and profiling, dynamically over time. This approach uses (a) hyperdimensional computing to enable capture variable-length trajectories of commuter trips represented as vehicular movement across intersections, and (b) transforms these into feature vectors that can be incrementally learned over time by the Incremental Knowledge Acquiring Self-Learning (IKASL) algorithm. The proposed approach was tested and evaluated on a dataset consisting of approximately 190 million vehicular movement records obtained from 1,400 Bluetooth identifiers placed at the intersections of the arterial road network in the State of Victoria, Australia.

Ort, förlag, år, upplaga, sidor
IEEE, 2019. s. 1664-1670
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
Nationell ämneskategori
Transportteknik och logistik
Identifikatorer
URN: urn:nbn:se:umu:diva-170026DOI: 10.1109/ITSC.2019.8917320ISI: 000521238101111Scopus ID: 2-s2.0-85076810049ISBN: 9781538670248 (digital)ISBN: 9781538670255 (tryckt)OAI: oai:DiVA.org:umu-170026DiVA, id: diva2:1427577
Konferens
IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), OCT 27-30, 2019, Auckland, NEW ZEALAND
Tillgänglig från: 2020-04-30 Skapad: 2020-04-30 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Wiklund, Urban

Sök vidare i DiVA

Av författaren/redaktören
Wiklund, Urban
Av organisationen
Radiofysik
Transportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 202 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf