Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Discrete element modelling of large soil deformations under heavy vehicles
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)ORCID-id: 0000-0002-0787-4988
Swedish University of Agricultural Sciences, Umeå, Sweden.
2021 (Engelska)Ingår i: Journal of terramechanics, ISSN 0022-4898, E-ISSN 1879-1204, Vol. 93, s. 11-21Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper addresses the challenges of creating realistic models of soil for simulations of heavy vehicles on weak terrain. We modelled dense soils using the discrete element method with variable parameters for surface friction, normal cohesion, and rolling resistance. To find out what type of soils can be represented, we measured the internal friction and bulk cohesion of over 100 different virtual samples. To test the model, we simulated rut formation from a heavy vehicle with different loads and soil strengths. We conclude that the relevant space of dense frictional and frictional-cohesive soils can be represented and that the model is applicable for simulation of large deformations induced by heavy vehicles on weak terrain.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 93, s. 11-21
Nyckelord [en]
DEM, Multibody Dynamics, Weak Soil, Rut Formation, Multipass
Nationell ämneskategori
Annan fysik Annan geovetenskap och miljövetenskap Teknisk mekanik
Forskningsämne
fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-176349DOI: 10.1016/j.jterra.2020.10.002ISI: 000596712200002Scopus ID: 2-s2.0-85094326100OAI: oai:DiVA.org:umu-176349DiVA, id: diva2:1485085
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskning, DIA 2017/14 #6eSSENCE - An eScience CollaborationSwedish National Infrastructure for Computing (SNIC), SNIC dnr 2019/3-168Tillgänglig från: 2020-11-01 Skapad: 2020-11-01 Senast uppdaterad: 2023-05-08Bibliografiskt granskad
Ingår i avhandling
1. Terrain machine learning
Öppna denna publikation i ny flik eller fönster >>Terrain machine learning
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Maskininlärning i terräng
Abstract [en]

The use of heavy vehicles in rough terrain is vital in the industry but has negative implications for the climate and ecosystem. In addition, the demand for improved efficiency underscores the need to enhance these vehicles' navigation capabilities. Navigating rough terrain presents distinct challenges, including deformable soil, surface roughness, and spatial and temporal terrain variability. Focusing on forestry, this thesis aims to improve navigation using machine learning and physics simulations. Without considering the vehicle-terrain dynamics, methods for navigation can result in unsafe or unnecessarily challenging situations. Specifically, we address route planning, control for autonomous vehicles, and soilde formations. We simulate soil using the discrete element method and vehicles using multibody dynamics.

To enhance route planning, we train a predictor model that uses a height map of the terrain to predict measures of traversability. The model has a directional dependency, couples geometric terrain features with vehicle design and dynamics, and allows for swift evaluations over large areas. The proposed method facilitates detailed route planning, using multiple objectives to yield efficient solutions.

We address autonomy in rough terrain navigation by training a controller through deep reinforcement learning. The control policy uses a local height map for perception to plan and control a forwarder with actively articulated suspensions. The controller adapts to overcome various obstacles and demonstrates skilled driving in rough terrain.

Extending beyond simulation, we address the simulation-to-reality gap of vehicles with complex hydraulic drivelines through system identification and domain randomization. The results show that having an accurate model of the actuators, modelling system delays, and preventing bang-bang control yields successful transfer. Controllers that train in simulation and transfer to reality are a step toward autonomous vehicles.

While the previously mentioned studies assume rigid terrain, we also answer if the discrete element method can capture large soil deformations due to heavy traffic. The results show that the discrete element method can represent a wide variety of natural soil and that the resulting rut depths agree well with empirical models and experimental data, including multipass scenarios.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 38
Nyckelord
multibody dynamics simulation, rough terrain vehicle, autonomous vehicles, robotics control, discrete element method, sim-to-real, reinforcement learning
Nationell ämneskategori
Robotteknik och automation Annan fysik Skogsvetenskap Datorseende och robotik (autonoma system)
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-207982 (URN)978-91-8070-060-3 (ISBN)978-91-8070-059-7 (ISBN)
Disputation
2023-06-01, NAT.D.410, Umeå, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskning, DIA 2017/14 #6
Tillgänglig från: 2023-05-11 Skapad: 2023-05-05 Senast uppdaterad: 2023-05-08Bibliografiskt granskad

Open Access i DiVA

fulltext(6342 kB)214 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6342 kBChecksumma SHA-512
95543bac0cdb50af5a32de1c2c399dc334cf9031174562f8d099c93d8fcd71d8a31f22e2bea0be75246084220d4e383a5bc874cf703a98c4d336a716ad311b83
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Wiberg, ViktorServin, Martin

Sök vidare i DiVA

Av författaren/redaktören
Wiberg, ViktorServin, Martin
Av organisationen
Institutionen för fysik
I samma tidskrift
Journal of terramechanics
Annan fysikAnnan geovetenskap och miljövetenskapTeknisk mekanik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 214 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 591 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf