Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Contextual importance and utility: a theoretical foundation
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Computer Science, Aalto University, Espoo, Finland.ORCID-id: 0000-0002-8078-5172
2022 (Engelska)Ingår i: AI 2021: Advances in Artificial Intelligence: 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2–4, 2022, Proceedings / [ed] Guodong Long; Xinghuo Yu; Sen Wang, Cham: Springer Nature, 2022, s. 117-128Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper provides new theory to support to the eXplainable AI (XAI) method Contextual Importance and Utility (CIU). CIU arithmetic is based on the concepts of Multi-Attribute Utility Theory, which gives CIU a solid theoretical foundation. The novel concept of contextual influence is also defined, which makes it possible to compare CIU directly with so-called additive feature attribution (AFA) methods for model-agnostic outcome explanation. One key takeaway is that the "influence" concept used by AFA methods is inadequate for outcome explanation purposes even for simple models to explain. Experiments with simple models show that explanations using contextual importance (CI) and contextual utility (CU) produce explanations where influence-based methods fail. It is also shown that CI and CU guarantees explanation faithfulness towards the explained model.

Ort, förlag, år, upplaga, sidor
Cham: Springer Nature, 2022. s. 117-128
Serie
Lecture Notes in Computer Science (LNAI), ISSN 0302-9743, E-ISSN 1611-3349 ; 13151
Nyckelord [en]
Explainable AI, Contextual Importance and Utility, Multi-Attribute Utility Theory, Decision Theory
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-192578DOI: 10.1007/978-3-030-97546-3_10ISI: 000787242700010Scopus ID: 2-s2.0-85127162690ISBN: 9783030975456 (tryckt)ISBN: 9783030975463 (digital)OAI: oai:DiVA.org:umu-192578DiVA, id: diva2:1638575
Konferens
34th Australasian Joint Conference on Artificial Intelligence, Online via Sydney, Australia, February 2-4, 2022
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP), 570011220Tillgänglig från: 2022-02-17 Skapad: 2022-02-17 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusarXiv (preprint)

Person

Främling, Kary

Sök vidare i DiVA

Av författaren/redaktören
Främling, Kary
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 331 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf