Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Expressibility of multiscale physics in deep networks
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
2022 (Engelska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Motivated by the successes in the field of deep learning, the scientific community has been increasingly interested in neural networks that are able to reason about physics. As neural networks are universal approximators, they could in theory learn representations that are more efficient than traditional methods whenever improvements are theoretically possible. This thesis, done in collaboration with Algoryx, serves both as a review of the current research in this area and as an experimental investigation of a subset of the proposed methods. We focus on how useful these methods are as \textit{learnable simulators} of mechanical systems that are possibly constrained and multiscale. The experimental investigation considers low-dimensional problems with training data generated by either custom numerical integration or by use of the physics engine AGX Dynamics. A good learnable simulator should express some important properties such as being stable, accurate, generalizable, and fast. Importantly, a generalizable simulator must be able to represent reconfigurable environments, requiring a model known as a graph neural network (GNN). The experimental results show that black-box neural networks are limited to approximate physics in the states it has been trained on. The results also suggest that traditional message-passing GNNs have a limited ability to represent more challenging multiscale systems. This is currently the most widely used method to realize GNNs and thus raises concern as there is not much to be gained by investing time into a method with fundamental limitations. 

Ort, förlag, år, upplaga, sidor
2022.
Nationell ämneskategori
Annan fysik Annan data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-197523OAI: oai:DiVA.org:umu-197523DiVA, id: diva2:1678353
Externt samarbete
Algoryx Simulation AB
Ämne / kurs
Examensarbete i teknisk fysik
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk fysik
Handledare
Examinatorer
Tillgänglig från: 2022-06-29 Skapad: 2022-06-29 Senast uppdaterad: 2022-06-29Bibliografiskt granskad

Open Access i DiVA

fulltext(2359 kB)271 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2359 kBChecksumma SHA-512
e0b2419a1b0f3a331ec898763144459ab5ac3c08a98009baa91d43e56e577e2a60a7bae8743e6b12a7f1c05e09ba6f473861cd96824d3af5825c462e697c477c
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för fysik
Annan fysikAnnan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 271 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 702 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf