Umeå universitets logga

umu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The ASSISTANT project: AI for high level decisions in manufacturing
Insight Centre for Data Analytics, University College Cork, Cork, Ireland.
IMT Atlantique, LS2N-CNRS, Nantes, France.
Laboratory for Manufacturing Systems Automation, University of Patras, Patras, Greece.
CodesignS, Flanders Make vzw, Lommel, Belgium.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: International Journal of Production Research, ISSN 0020-7543, E-ISSN 1366-588X, Vol. 61, nr 7, s. 2288-2306Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper outlines the main idea and approach of the H2020 ASSISTANT (LeArning and robuSt deciSIon SupporT systems for agile mANufacTuring environments) project. ASSISTANT is aimed at the investigation of AI-based tools for adaptive manufacturing environments, and focuses on the development of a set of digital twins for integration with, management of, and decision support for production planning and control. The ASSISTANT tools are based on the approach of extending generative design, an established methodology for product design, to a broader set of manufacturing decision making processes; and to make use of machine learning, optimisation, and simulation techniques to produce executable models capable of ethical reasoning and data-driven decision making for manufacturing systems. Combining human control and accountable AI, the ASSISTANT toolsets span a wide range of manufacturing processes and time scales, including process planning, production planning, scheduling, and real-time control. They are designed to be adaptable and applicable in a both general and specific manufacturing environments.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2023. Vol. 61, nr 7, s. 2288-2306
Nyckelord [en]
Artificial intelligence, data analytics, digital twins, process and production planning, reconfigurable manufacturing systems, scheduling and real-time control
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-198345DOI: 10.1080/00207543.2022.2069525ISI: 000828974100001Scopus ID: 2-s2.0-85134609832OAI: oai:DiVA.org:umu-198345DiVA, id: diva2:1685072
Tillgänglig från: 2022-08-01 Skapad: 2022-08-01 Senast uppdaterad: 2023-07-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Östberg, Per-Olov

Sök vidare i DiVA

Av författaren/redaktören
Östberg, Per-Olov
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
International Journal of Production Research
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 223 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf