Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of ion composition on escape and morphology at Mars
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0002-9812-1323
Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0001-5494-5374
Swedish Institute of Space Physics, Kiruna, Sweden.ORCID-id: 0000-0003-0574-4423
2023 (Engelska)Ingår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 41, nr 2, s. 375-388Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We refine a recently presented method to estimate ion escape from non-magnetized planets and apply it to Mars. The method combines in-situ observations and a hybrid plasma model (ions as particles, electrons as a fluid). We use measurements from the Mars Atmosphere and Volatile Evolution (MAVEN) mission and Mars Express (MEX) for one orbit on 2015-03-01. Observed upstream solar wind conditions are used as input to the model. We then vary the total ionospheric ion upflux until the solution fits the observed bow shock location. This solution is a self-consistent approximation of the global Mars-solar wind interaction at this moment, for the given upstream conditions. We can then study global properties, such as the heavy ion escape rate. Here we investigate the effects on escape estimates of assumed ionospheric ion composition, solar wind alpha particle concentration and temperature, solar wind velocity aberration, and solar wind electron temperature. We also study the amount of escape in the ion plume and in the tail of the planet. Here we find that estimates of total heavy ion escape are not very sensitive to the composition of the heavy ions, or the amount and temperature of the solar wind alpha particles. We also find that velocity aberration has a minor influence on escape, but that it is sensitive to the solar wind electron temperature. The plume escape is found to contribute 29 % of the total heavy ion escape, in agreement with observations. Heavier ions have a larger fraction of escape in the plume compared to the tail. We also find that the escape estimates scales inversely with the square root of the atomic mass of the escaping ion specie.

Ort, förlag, år, upplaga, sidor
Copernicus Publications, 2023. Vol. 41, nr 2, s. 375-388
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
URN: urn:nbn:se:umu:diva-207998DOI: 10.5194/angeo-41-375-2023ISI: 001161247200001Scopus ID: 2-s2.0-85174694828OAI: oai:DiVA.org:umu-207998DiVA, id: diva2:1755215
Forskningsfinansiär
Rymdstyrelsen, 198/19Rymdstyrelsen, 198/19
Anmärkning

Originally included in thesis in manuscript form. 

Tillgänglig från: 2023-05-05 Skapad: 2023-05-05 Senast uppdaterad: 2025-02-12Bibliografiskt granskad
Ingår i avhandling
1. Ion escape from Mars
Öppna denna publikation i ny flik eller fönster >>Ion escape from Mars
2023 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Förlust av joner till rymden vid Mars
Abstract [en]

When the solar wind reaches the Mars obstacle, mass loading by planetary ions slows down the solar wind and raises the bow shock. The Martian atmosphere is undergoing the a scavenging by the solar wind without the protection of a global magnetic field. Atmospheric escape is an important process for the evolution of the Martian climate. For present Mars, the dominant escape of atmospheric neutrals is through four channels: Jeans escape, photochemical reactions, sputtering and electron impact ionization. Ions above the exobase get accelerated by the solar wind electric field and can escape.

We here apply a new method for estimating heavy ion (O+, O+2, and CO+2) escape rates at Mars, which combines a hybrid model and observations. We use observed upstream solar wind parameters as input for a hybrid plasma model, where the total ion upflux at the exobase is a free parameter. We then vary this ion upflux to find the best fit to the observed bow shock location. This method gives us a self-consistent description of the Mars-solar wind interaction, which can be used to study other properties of the solar wind interaction besides escape.

Abstract [sv]

När solvinden stöter på Mars så tyngs den ner av joner från planeten, vilket bromsar solvinden och expanderar bogshocken. Mars atmosfär eroderas av solvinden eftersom planeten saknar ett globalt magnetfält. Atmosfärsförlust är en viktig process i hur Mars klimat förändras. För nuvarande Mars är det fyra dominerande processer för förlust av neutrala atomer: Jeans förlust, fotokemiska reaktioner, sputtering och elektronkollisionsjonisering. Joner ovan exobasen accelereras av solvinden och kan förloras. Här använder vi en ny metod för att uppskatta förlusten av tunga joner (O+, O+2 , and CO+2) vid Mars, som kombinerar en hybridmodell och observationer. Vi använder observerade solvindsparametrar som indata till en hybrid plasmamodell, där totalt jonuppflöde vid exobasen är en fri parameter. Vi varierar sedan detta jonuppflöde för att hitta bästa passningen till den observerade positionen för bogshocken. Metoden ger en självkonsistent beskrivning av Mars växelverkan med solvinden, som kan användas till att studera andra egenskaper av växelverkan, förutom jonförlust.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 35
Serie
IRF Scientific Report, ISSN 0284-1703 ; 316
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
urn:nbn:se:umu:diva-208050 (URN)978-91-8070-101-3 (ISBN)978-91-8070-100-6 (ISBN)
Presentation
2023-05-31, Ljusårssalen, Swedish Institute of Space Physics, Kiruna, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Rymdstyrelsen, 198/19
Tillgänglig från: 2023-05-12 Skapad: 2023-05-08 Senast uppdaterad: 2023-11-01Bibliografiskt granskad
2. Modeling the effects of solar conditions on the interaction of the solar wind with Mars
Öppna denna publikation i ny flik eller fönster >>Modeling the effects of solar conditions on the interaction of the solar wind with Mars
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Modellering av solens effekt på växelverkan mellan solvinden och Mars
Abstract [en]

As the solar wind reaches Mars, planetary ions mass-load the flow, slowing it down and creating a bow shock upstream of the planet. The convective electric field, coming from the solar wind flow and solar wind magnetic field, results in a potential difference across the conducting ionosphere that in turn results in induction currents flowing through the conductor (unipolar induction). The magnetic fields associated with the induction currents cancel (or reduce due to finite conductivity) the magnetic field inside the ionosphere (Lenz’s law). Above the ionosphere, the induced fields act on the solar wind plasma by deviating it, thus a void called an induced magnetosphere is created. Without a global magnetic field, Mars’ atmosphere is eroded by the solar wind, an ongoing atmospheric escape that has significantly influenced its climatic evolution. For present Mars, the dominant escape of atmospheric neutrals is through four channels: Jeans escape, photochemical reactions, sputtering and electron impact ionization, while ions above the exobase are accelerated by the solar wind convective electric field to escape.

In this study, we introduce a new method for estimating heavy ion (O+, O+2, and CO+2) escape rates from Mars, combining a hybrid plasma model with observational data. We use observed upstream solar wind parameters as input for a hybrid plasma model, where the total ion upflux at the exobase is a free parameter. We then vary this ion upflux to find the best fit to the observed bow shock location. This method gives us a self-consistent description of the Mars-solar wind interaction, which enables broader analyses of the interaction’s properties, beyond just escape.

We investigate the influence of external factors, solar EUV radiation, solar wind dynamic pressure, interplanetary magnetic field (IMF) strength, and IMF cone angle on Martian heavy ion escape. Our results reveal that ion escape increases with stronger EUV radiation and solar wind dynamic pressure, but decreases with a higher IMF strength and cone angle. In an extreme case study when the solar wind flowis nearly aligned with the solar IMF, the induced magnetosphere of Mars degenerates, and the bow shock on the dayside disappears, ions flowing towards the sun are accelerated by the ambipolar field, and a large-scale E×B cross-flow structure forms, dramatically increasing ionescape. We therefore call this type of interaction a degenerate induced magnetosphere. Finally, we compare the interactions of Mars and Venus in response to similar solar wind conditions, finding significant similarities in their responses as unmagnetized planets, further informing our understanding of atmospheric escape and solar wind interactions with unmagnetized bodies. 

Ort, förlag, år, upplaga, sidor
Umeå University, 2025. s. 67
Serie
IRF Scientific Report, ISSN 0284-1703 ; 319
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
urn:nbn:se:umu:diva-235036 (URN)978-91-8070-590-5 (ISBN)978-91-8070-591-2 (ISBN)
Disputation
2025-03-07, Ljusårssalen, Institutet för Rymdfysik, Bengt Hultqvist väg 1, Kriuna, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-02-14 Skapad: 2025-02-05 Senast uppdaterad: 2025-02-12Bibliografiskt granskad

Open Access i DiVA

fulltext(3073 kB)117 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 3073 kBChecksumma SHA-512
3dc36b7438de7ab4bdec4b7b7341f9d129c112b63d444a34a1367fcfe38526ab8f7f794146011614e2713dd122ce70e91f71772c193acc46669514ca700b8eb1
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Zhang, QiHolmström, MatsWang, Xiao-Dong

Sök vidare i DiVA

Av författaren/redaktören
Zhang, QiHolmström, MatsWang, Xiao-Dong
Av organisationen
Institutionen för fysik
I samma tidskrift
Annales Geophysicae
Fusion, plasma och rymdfysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 117 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 327 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf