Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimal strategies for the static black-peg AB game with two and three pegs
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Foundations of Language Processing)ORCID-id: 0000-0001-7349-7693
2024 (Engelska)Ingår i: Discrete Mathematics, Algorithms and Applications (DMAA), ISSN 1793-8309, E-ISSN 1793-8317, Vol. 16, nr 4, artikel-id 2350049Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The AB Game is a game similar to the popular game Mastermind. We study a version of this game called Static Black-Peg AB Game. It is played by two players, the codemaker and the codebreaker. The codemaker creates a so-called secret by placing a color from a set of c colors on each of p ≤ c pegs, subject to the condition that every color is used at most once. The codebreaker tries to determine the secret by asking questions, where all questions are given at once and each question is a possible secret. As an answer the codemaker reveals the number of correctly placed colors for each of the questions. After that, the codebreaker only has one more try to determine the secret and thus to win the game. 

For given p and c, our goal is to find the smallest number k of questions the codebreaker needs to win, regardless of the secret, and the corresponding list of questions, called a (k + 1)-strategy. We present a (⌈4c/3⌉ − 1)-strategy for p = 2 for all c ≥ 2, and a ⌊(3c − 1)/2⌋-strategy for p = 3 for all c ≥ 4 and show the optimality of both strategies, i.e., we prove that no (k + 1)-strategy for a smaller k exists. 

Ort, förlag, år, upplaga, sidor
World Scientific, 2024. Vol. 16, nr 4, artikel-id 2350049
Nyckelord [en]
Game theory, mastermind, AB game, optimal strategy
Nationell ämneskategori
Diskret matematik
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-210346DOI: 10.1142/s1793830923500490ISI: 001034748600002Scopus ID: 2-s2.0-85165934499OAI: oai:DiVA.org:umu-210346DiVA, id: diva2:1771561
Forskningsfinansiär
Kempestiftelserna, JCK-2022.1Tillgänglig från: 2023-06-20 Skapad: 2023-06-20 Senast uppdaterad: 2024-06-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Jäger, GeroldDrewes, Frank

Sök vidare i DiVA

Av författaren/redaktören
Jäger, GeroldDrewes, Frank
Av organisationen
Institutionen för matematik och matematisk statistikInstitutionen för datavetenskap
I samma tidskrift
Discrete Mathematics, Algorithms and Applications (DMAA)
Diskret matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 113 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf