Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ECFA: an efficient convergent firefly algorithm for solving task scheduling problems in cloud-edge computing
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, China.
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, China.
School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, China.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.ORCID-id: 0000-0003-4228-2774
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: IEEE Transactions on Services Computing, E-ISSN 1939-1374, s. 1-14Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In cloud-edge computing paradigms, the integration of edge servers and task offloading mechanisms has posed new challenges to developing task scheduling strategies. This paper proposes an efficient convergent firefly algorithm (ECFA) for scheduling security-critical tasks onto edge servers and the cloud datacenter. The proposed ECFA uses a probability-based mapping operator to convert an individual firefly into a scheduling solution, in order to associate the firefly space with the solution space. Distinct from the standard FA, ECFA employs a low-complexity position update strategy to enhance computational efficiency in solution exploration. In addition, we provide a rigorous theoretical analysis to justify that ECFA owns the capability of converging to the global best individual in the firefly space. Furthermore, we introduce the concept of boundary traps for analyzing firefly movement trajectories, and investigate whether ECFA would fall into boundary traps during the evolutionary procedure under different parameter settings. We create various testing instances to evaluate the performance of ECFA in solving the cloud-edge scheduling problem, demonstrating its superiority over FA-based and other competing metaheuristics. Evaluation results also validate that the parameter range derived from the theoretical analysis can prevent our algorithm from falling into boundary traps.

Ort, förlag, år, upplaga, sidor
IEEE, 2023. s. 1-14
Nyckelord [en]
Cloud computing, cloud-edge computing, Convergence, convergence proof, firefly algorithm, Processor scheduling, Scheduling, Servers, Task analysis, task scheduling, Trajectory, trajectory analysis
Nationell ämneskategori
Datavetenskap (datalogi) Datorsystem
Identifikatorer
URN: urn:nbn:se:umu:diva-212325DOI: 10.1109/TSC.2023.3293048Scopus ID: 2-s2.0-85164678733OAI: oai:DiVA.org:umu-212325DiVA, id: diva2:1783963
Forskningsfinansiär
KempestiftelsernaTillgänglig från: 2023-07-25 Skapad: 2023-07-25 Senast uppdaterad: 2024-04-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Gu, Zonghua

Sök vidare i DiVA

Av författaren/redaktören
Gu, Zonghua
Av organisationen
Institutionen för tillämpad fysik och elektronik
I samma tidskrift
IEEE Transactions on Services Computing
Datavetenskap (datalogi)Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 66 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf