Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An evaluation of contextual importance and utility for outcome explanation of black-box predictions for medical datasets
Aalto University, Helsinki, Finland; Bournemouth University, Poole, UK.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Aalto University, Helsinki, Finland.ORCID-id: 0000-0002-8078-5172
2023 (Engelska)Ingår i: Explainable artificial intelligence: First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part I / [ed] Luca Longo, Springer Nature, 2023, s. 544-557Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Contextual Importance and Utility (CIU) is a model-agnostic method for producing situation- or instance-specific explanations of the outcome of so-called black-box systems. A major difference between CIU and other outcome explanation methods (also called post-hoc methods) is that CIU produces explanations without producing any intermediate interpretable model. CIU’s notion of importance is similar as in Decision Theory but differs from how importance is defined for other outcome explanation methods. Utility is also a well-known concept from Decision Theory that is largely ignored in current Explainable AI research. CIU is here validated by providing explanations for the two popular medical data sets - heart disease and breast cancer in order to show the applicability of CIU explanations on medical predictions and with different black-box models. The explanations are compared with corresponding ones produced by the Local Interpretable Model-agnostic Explanations (LIME) method [17], which is currently one of the most used post-hoc explanation methods. The paper’s main contribution is to provide new CIU results and insights on several benchmark data sets and showing in what way CIU differs from LIME-based explanations.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2023. s. 544-557
Serie
Communications in Computer and Information Science book series (CCIS), ISSN 1865-0929, E-ISSN 1865-0937 ; 1901
Nyckelord [en]
Explainable AI, Contextual Importance, Contextual Utility, Multiple Criteria Decision Making, Heart disease, Breast cancer data
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-217312DOI: 10.1007/978-3-031-44064-9_29Scopus ID: 2-s2.0-85176960967ISBN: 978-3-031-44063-2 (tryckt)ISBN: 978-3-031-44064-9 (digital)OAI: oai:DiVA.org:umu-217312DiVA, id: diva2:1815633
Konferens
1st World Conference on Explainable Artificial Intelligence, xAI 2023, Lisbon, Portugal, July 26-28, 2023
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP), 570011220Tillgänglig från: 2023-11-29 Skapad: 2023-11-29 Senast uppdaterad: 2023-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Främling, Kary

Sök vidare i DiVA

Av författaren/redaktören
Främling, Kary
Av organisationen
Institutionen för datavetenskap
Människa-datorinteraktion (interaktionsdesign)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 149 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf