Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Plasma physics at comets: what can we learn from laboratory experiments?
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0001-5379-1158
University of California-Los Angeles, United States.
Northumbria University, United Kingdom.
Universidade de Lisboa, Portugal.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2024, nr 2024, s. 163-163Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Diamagnetic cavities at comets were predicted already in the 1960s [1], and then observed at comet lP/Halley by the ESA/Giotto spacecraft in 1986 [2]. Recently, the ESA/Rosetta spacecraft spent two years orbiting comet 67P/Churyumov-Gerasimenko and encountered the diamagnetic cavity of comet 67P more than 700 times [3, 4]. Most encounters lasted a few minutes, with the duration varying from a few seconds up to more than 30 minutes. As the spacecraft moved very slowly (~lms-1), it can be considered stationary with respect to the plasma. Therefore, the quick succession of detections indicates that the boundary of the diamagnetic cavity moved over the spacecraft. Figure 1 (left) shows three diamagnetic cavity signatures observed with the plasma instruments on Rosetta on 16 September 2015 when the comet was close to perihelion. Rosetta was in the diamagnetic cavity during the periods of nearly zero magnetic field (marked by the coloured regions). Outside the cavity, the plasma was often characterised by a series of asymmetric, steepened waves which are visible in the magnetic field, as well as in the plasma density [5]. Since all observations to date have been made using a single spacecraft, the shape of the diamagnetic cavity boundary cannot be well constrained by measurements. However, it has been suggested, based on wave observations, that bulges on the cavity boundary move past the spacecraft, causing the latter to quickly move in and out of the cavity [6].

Ort, förlag, år, upplaga, sidor
IEEE, 2024. nr 2024, s. 163-163
Serie
International Conference on Electromagnetics in Advanced Applications, ISSN 2835-1355, E-ISSN 2766-2284
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
URN: urn:nbn:se:umu:diva-232244DOI: 10.1109/ICEAA61917.2024.10701783Scopus ID: 2-s2.0-85208714504ISBN: 9798350360981 (tryckt)ISBN: 9798350360974 (digital)OAI: oai:DiVA.org:umu-232244DiVA, id: diva2:1916722
Konferens
2024 International Conference on Electromagnetics in Advanced Applications, (ICEAA), Lisboa, Portugal, 2-6 September 2024
Tillgänglig från: 2024-11-28 Skapad: 2024-11-28 Senast uppdaterad: 2024-11-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Gunell, Herbert

Sök vidare i DiVA

Av författaren/redaktören
Gunell, Herbert
Av organisationen
Institutionen för fysik
Fusion, plasma och rymdfysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 45 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf