Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Context matters: Understanding socially appropriate affective responses via sentence embeddings
KTH: The Royal Institute of Technology, Stockholm, Sweden.
PAL Robotics, Barcelona, Spain.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-2282-9939
KTH: The Royal Institute of Technology, Stockholm, Sweden.
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Social Robotics: 16th International Conference, ICSR + AI 2024, Proceedings, Part I / [ed] Oskar Palinko; Leon Bodenhagen; John-John Cabibihan; Kerstin Fischer; Selma Šabanović; Katie Winkle; Laxmidhar Behera · Shuzhi Sam Ge; Dimitrios Chrysostomou; Wanyue Jiang; Hongsheng He, Springer Nature, 2025, s. 78-91Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

As AI systems increasingly engage in social interactions, comprehending human social dynamics is crucial. Affect recognition enables systems to respond appropriately to emotional nuances in social situations. However, existing multimodal approaches lack accounting for the social appropriateness of detected emotions within their contexts. This paper presents a novel methodology leveraging sentence embeddings to distinguish socially appropriate and inappropriate interactions for more context-aware AI systems. Our approach measures the semantic distance between facial expression descriptions and predefined reference points. We evaluate our method using a benchmark dataset and a real-world robot deployment in a library, combining GPT-4(V) for expression descriptions and ada-2 for sentence embeddings to detect socially inappropriate interactions. Our results underscore the importance of considering contextual factors for effective social interaction understanding through context-aware affect recognition, contributing to the development of socially intelligent AI capable of interpreting and responding to human affect appropriately.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2025. s. 78-91
Serie
International Conference on Social Robotics, ISSN 03029743, E-ISSN 16113349
Nyckelord [en]
embeddings, human-robot interaction, machine learning, Social representation
Nationell ämneskategori
Datavetenskap (datalogi) Artificiell intelligens
Identifikatorer
URN: urn:nbn:se:umu:diva-238444DOI: 10.1007/978-981-96-3522-1_9Scopus ID: 2-s2.0-105002016733ISBN: 9789819635214 (tryckt)OAI: oai:DiVA.org:umu-238444DiVA, id: diva2:1957439
Konferens
ICSR’24: 16th International Conference on Social Robotics +AI, Odense, Denmark, October 23-26, 2024
Anmärkning

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 15561)

Tillgänglig från: 2025-05-09 Skapad: 2025-05-09 Senast uppdaterad: 2025-05-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Güneysu Özgür, Arzu

Sök vidare i DiVA

Av författaren/redaktören
Güneysu Özgür, Arzu
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)Artificiell intelligens

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 17 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf