Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mechanistic modeling of cell viability assays with in silico lineage tracing
Department of Chemical and Biomolecular Engineering, Clemson University, SC, Clemson, United States.
Department of Chemical and Biomolecular Engineering, Clemson University, SC, Clemson, United States.
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap. Department of Chemical and Biomolecular Engineering, Clemson University, SC, Clemson, United States; Faculté de Pharmacie, Université Paris Cité, Paris, France.
Department of Chemical and Biomolecular Engineering, Clemson University, SC, Clemson, United States; Department of Chemistry, Clemson University, SC, Clemson, United States.
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 21, nr 8, artikel-id e1013156Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Data from cell viability assays, which measure cumulative division and death events in a population and reflect substantial cellular heterogeneity, are widely available. However, interpreting such data with mechanistic computational models is hindered because direct model/data comparison is often muddled. We developed an algorithm that tracks simulated division and death events in mechanistically-detailed single-cell lineages to enable such a model/data comparison and suggest causes of cell-cell drug response variability. Using our previously developed model of mammalian single-cell proliferation and death signaling, we simulated drug dose response experiments for four targeted anti-cancer drugs (alpelisib, neratinib, trametinib and palbociclib) and compared them to experimental data. Simulations are consistent with data for strong growth inhibition by trametinib (MEK inhibitor) and overall lack of efficacy for alpelisib (PI-3K inhibitor), but are inconsistent with data for palbociclib (CDK4/6 inhibitor) and neratinib (EGFR inhibitor). Model/data inconsistencies suggest that (i) the importance of CDK4/6 for driving the cell cycle may be overestimated, and (ii) the cellular balance between basal (tonic) and ligand-induced signaling is a critical determinant of receptor inhibitor response. Simulations show subpopulations of rapidly and slowly dividing cells in both control and drug-treated conditions. Variations in mother cells prior to drug treatment impinging on ERK pathway activity are associated with the rapidly dividing phenotype and trametinib resistance. This work lays a foundation for the application of mechanistic modeling to large-scale cell viability datasets and better understanding determinants of cellular heterogeneity in drug response.

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS), 2025. Vol. 21, nr 8, artikel-id e1013156
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-243881DOI: 10.1371/journal.pcbi.1013156ISI: 001560329300003PubMedID: 40880521Scopus ID: 2-s2.0-105014322783OAI: oai:DiVA.org:umu-243881DiVA, id: diva2:1995449
Forskningsfinansiär
NIH (National Institutes of Health), R35GM141891Tillgänglig från: 2025-09-05 Skapad: 2025-09-05 Senast uppdaterad: 2025-09-18Bibliografiskt granskad

Open Access i DiVA

fulltext(1784 kB)20 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1784 kBChecksumma SHA-512
81b50e60e9fe667e1bb259956f6d1f2851923d06303f94ae5f6f888219ad23cf1ea2193dfe015b4ddf7370bea824f95505034bbdc4327742413f3d16153ebdf5
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Amrit, Aurore K.Erdem, Cemal

Sök vidare i DiVA

Av författaren/redaktören
Amrit, Aurore K.Erdem, Cemal
Av organisationen
Institutionen för medicinsk biovetenskap
I samma tidskrift
PloS Computational Biology
Cell- och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 32 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 326 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf