Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Slagging in fixed-bed combustion of phosphorus-poor biomass: critical ash-forming processes and compositions
Luleå, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Thermochemical Energy Conversion Laboratory)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Thermochemical Energy Conversion Laboratory)ORCID-id: 0000-0003-4428-3201
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. (Thermochemical Energy Conversion Laboratory)
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 29, nr 2, s. 894-908Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Slagging in combustion facilities is not welcomed, because it may cause technical and operational problems, as well as extra costs. Increased understanding of the critical slagging subprocesses makes it easier to suggest semiempirical models and fuel indexes for predicting the slagging tendencies of different fuels. That could open the biomass market for potentially more troublesome raw materials. The objective of this work was to determine critical ash-forming processes and compositions in the fixed-bed combustion of phosphorus-poor biomass fuels. This was achieved by performing a systematic review of data and experience gathered from combustion experiments in a small grate burner of 36 different biomasses, as well as chemical analysis of their bottom ashes and slags. The paper presents a discussion of the slagging tendency in phosphorus-poor biomass by combining three different slagging classifications, culminating in a proposed starting point for a new slagging index. The slag (ash particles >3.15 mm in size) formed during the combustion experiments has been described according to the fraction of fuel ash that forms slag (expressed in terms of weight percent), the visual sintering category (1-4), and the viscosity predictions. The results explain that both the fraction of melt and its viscosity are critical for the slag formation process in phosphorus-poor biomasses. In addition, fuels with low Si/K ratio along with a higher Ca concentration may form a low viscous carbonate melt that is not prone to form slag. Increased Si and lowered Ca concentration will increase the amount of formed silicate melt formed, as well as its viscosity, thus resulting in a more sticky melt.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2015. Vol. 29, nr 2, s. 894-908
Nationell ämneskategori
Energiteknik Kemiteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-101613DOI: 10.1021/ef502531mISI: 000349943300050Scopus ID: 2-s2.0-84923310922OAI: oai:DiVA.org:umu-101613DiVA, id: diva2:801749
Tillgänglig från: 2015-04-10 Skapad: 2015-04-07 Senast uppdaterad: 2024-07-02Bibliografiskt granskad
Ingår i avhandling
1. Fine particle emissions and slag formation in fixed-bed biomass combustion: aspects of fuel engineering
Öppna denna publikation i ny flik eller fönster >>Fine particle emissions and slag formation in fixed-bed biomass combustion: aspects of fuel engineering
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

There is a consensus worldwide that the share of renewable energy sources should be increased to mitigate climate change. The strive to increase the renewable energy fraction can partly be met by an increased utilization of different biomass feedstocks. Many of the "new" feedstocks puts stress on certain challenges such as air pollution emissions and operation stability of the combustion process. The overall objective was to investigate, evaluate, and explain the effects of fuel design and combustion control - fuel engineering - as primary measures for control of slag formation, deposit formation, and fine particle emissions during biomass combustion in small and medium scale fixed-bed appliances. The work in this thesis can be outlined as having two main focus areas, one more applied regarding fuel engineering measures and one more fundamental regarding the time-resolved release of ash forming elements, with particular focus on potassium.

The overall conclusion related to the abatement of particle emissions and slag formation, is that the release of fine particle and deposit forming matter can be controlled simultaneously as the slag formation during fixed-bed biomass combustion. The methodology is in this perspective denoted “fuel engineering” and is based on a combined approach including both fuel design and process control measures. The studies on time-resolved potassium release showed that a Macro-TG reactor with single pellet experiments was a valuable tool for studying ash transformation along the fuel conversion. The combination of dedicated release determinations based on accurate mass balance considerations and ICP analysis, with phase composition characterization by XRD, is important for the understanding of potassium release in general and time-resolved data in particular. For wood, the results presented in this work supports the potassium release mechanism from "char-K" but questions the previously suggested release mechanism from decomposition of K-carbonates. For straw, the present data support the idea that the major part of the potassium release is attributed to volatilization of KCl. To further explore the detailed mechanisms, the novel approach developed and applied in this work should be complemented with other experimental and analytical techniques.

The research in this thesis has explored some of the challenges related to the combined phenomena of fuel conversion and ash transformation during thermochemical conversion of biomass, and has contributed with novel methods and approaches that have gained new knowledge to be used for the development of more effective bioenergy systems.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2015. s. 73
Nyckelord
Renewable energy, biomass, thermochemical fuel conversion, combustion, fine particle emissions, slag formation, fixed-bed, ash chemistry, fuel engineering, release
Nationell ämneskategori
Kemiteknik Energiteknik Naturresursteknik
Identifikatorer
urn:nbn:se:umu:diva-102687 (URN)978-91-7601-274-1 (ISBN)
Disputation
2015-05-25, KBC-huset, sal KB3A9, Umeå Universitet, Umeå, 13:00 (Svenska)
Opponent
Handledare
Tillgänglig från: 2015-05-04 Skapad: 2015-04-30 Senast uppdaterad: 2025-02-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Fagerström, JonathanBoman, ChristofferBoström, Dan

Sök vidare i DiVA

Av författaren/redaktören
Fagerström, JonathanBoman, ChristofferBoström, Dan
Av organisationen
Institutionen för tillämpad fysik och elektronik
I samma tidskrift
Energy & Fuels
EnergiteknikKemiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 494 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf