Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Global Mars-solar wind coupling and ion escape
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna.ORCID-id: 0000-0003-0458-4050
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna.ORCID-id: 0000-0002-7056-3517
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Swedish Institute of Space Physics, Kiruna.ORCID-id: 0000-0002-7787-2160
Vise andre og tillknytning
2017 (engelsk)Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 8, s. 8051-8062Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Loss of the early Martian atmosphere is often thought to have occurred due to an effective transfer of the solar wind energy through the Martian induced magnetic barrier to the ionosphere. We have quantified the coupling efficiency by comparing the power of the heavy ion outflow with the available power supplied by the upstream solar wind. Constraining upstream solar wind density nsw, velocity vsw, and EUV intensity IEUV/photoionizing flux FXUV in varying intervals reveals a decrease in coupling efficiency, k,with solar wind dynamic pressure as ∝ pdyn−0.74±0.13 and with FXUV as k ∝ FXUV−2.28±0.30. Despite the decreasein coupling efficiency, higher FXUV enhances the cold ion outflow, increasing the total ion escape rate as Q(FXUV) = 1010(0.82 ± 0.05)FXUV. The discrepancy between coupling and escape suggests that ion escapefrom Mars is primarily production limited in the modern era, though decreased coupling may lead to an energy-limited solar wind interaction under early Sun conditions.

sted, utgiver, år, opplag, sider
Washington: American Geophysical Union (AGU), 2017. Vol. 122, nr 8, s. 8051-8062
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-141930DOI: 10.1002/2017JA024306ISI: 000411788800015OAI: oai:DiVA.org:umu-141930DiVA, id: diva2:1157320
Tilgjengelig fra: 2017-11-15 Laget: 2017-11-15 Sist oppdatert: 2022-03-08bibliografisk kontrollert
Inngår i avhandling
1. Ion escape from Mars: measurements in the present to understand the past
Åpne denne publikasjonen i ny fane eller vindu >>Ion escape from Mars: measurements in the present to understand the past
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Present-day Mars is a cold and dry planet with a thin CO2-dominated atmosphere comprising only a few ­­­mbar pressure at low altitudes. However, the Martian surface is marked with valley networks, hydrated mineral clays, carbonates and the remains of deltas and meandering rivers, i.e. traces of an active hydrological cycle present early in the planet's geological history. A strong greenhouse effect, and thus a thicker atmosphere, would have been required to sustain a sufficiently warm environment, particularly under the weaker luminosity of the early Sun. The fate of this early atmosphere is currently unknown.

While several mechanisms can remove atmospheric mass over time, a prominent hypothesis suggests that the lack of an intrinsic Earth-like global magnetic dipole has allowed the solar wind to erode the early Martian atmosphere by imparting energy to the planet's ionosphere which subsequently flows out as ion escape, over time depleting the greenhouse gasses and collapsing the ancient hydrological cycle. Previous studies have found insignificant ion escape rates under present-day conditions, however, the young Sun emitted significantly stronger solar wind and photoionizing radiation flux compared to the present. The geological record establishes the time of collapse of the hydrological cycle, estimated to have occurred in the mid-late Hesperian period (~3.3 billion years ago) at latest. To constrain the amount of atmosphere lost through ion escape since, we use the extensive database of ion flux measurements from the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) particles package on the Mars Express orbiter (2004-present) to quantify the ion escape rate dependence on upstream solar wind and solar radiation conditions.

The Martian ion escape rate is shown to be insensitive to solar wind parameters with a weak inverse dependence on solar wind dynamic pressure, and linearly dependent on solar ionizing photon flux, indicating efficient screening of the bulk ionosphere by the induced magnetic fields. The impact of an extreme coronal mass ejection is studied and found to have no significant effect on the ion escape rate. Instead, intense solar wind is shown to only increase the escaping energy flux, i.e. total power of escaping ions, without increasing the rate by accelerating already escaping ions. The orientation of the strongest magnetized crustal fields are shown to modulate the ion escape rate, though to have no significant time-averaged effect. We also study the influence of solar wind and solar radiation on the major Martian plasma boundaries and discuss factors that might limit the ion escape rate, including solar wind-ion escape coupling, which is found to be ≲1% and decreasing with increased solar wind dynamic pressure. The significant escape rate dependencies found are extrapolated back in time, considering the evolution of solar wind and ionizing radiation, and shown to account for only 4.8 ± 1.1 mbar equivalent surface pressure loss since the time of collapse of the Martian hydrosphere in the Hesperian, with ~6 mbar as an upper estimate. Extended to the late Noachian period (3.9 billion years ago), the found dependencies can only account for ≲10 mbar removed through ion escape, an insignificant amount compared to the ≳1 bar surface pressure required to sustain a warm climate on early Mars.

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2017. s. 66
Serie
IRF Scientific Report, ISSN 0284-1703 ; 309
Emneord
Mars, escape, solar wind, evolution, CME, coupling, plasma, atmosphere
HSV kategori
Forskningsprogram
rymdfysik
Identifikatorer
urn:nbn:se:umu:diva-141892 (URN)978-91-982951-3-9 (ISBN)978-91-7601-806-4 (ISBN)
Disputas
2017-12-08, Aulan, Rymdcampus 1, Kiruna, 09:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish National Space Board, 172/12
Tilgjengelig fra: 2017-11-17 Laget: 2017-11-15 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Ramstad, RobinBarabash, StasFutaana, YoshifumiNilsson, HansHolmström, Mats

Søk i DiVA

Av forfatter/redaktør
Ramstad, RobinBarabash, StasFutaana, YoshifumiNilsson, HansHolmström, Mats
Av organisasjonen
I samme tidsskrift
Journal of Geophysical Research - Space Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 727 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf