Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Avoid, Control, Succumb, or Balance: Engineering Students’ Approaches to a Wicked Sustainability Problem
Chalmers tekniska högskola. (UmSER)ORCID iD: 0000-0001-9667-2044
Chalmers tekniska högskola.
Chalmers tekniska högskola.
2017 (English)In: Research in science education, ISSN 0157-244X, E-ISSN 1573-1898, Vol. 47, no 4, p. 805-831Article in journal (Refereed) Published
Abstract [en]

Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students’ abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students’ approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students’ abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.

Place, publisher, year, edition, pages
2017. Vol. 47, no 4, p. 805-831
Keywords [en]
Engineering students, Ill-structured problems, Phenomenography, Science and engineering education, Wicked problems
National Category
Didactics
Research subject
didactics of natural science
Identifiers
URN: urn:nbn:se:umu:diva-158202DOI: 10.1007/s11165-016-9529-7ISI: 000404242800005Scopus ID: 2-s2.0-84978027795OAI: oai:DiVA.org:umu-158202DiVA, id: diva2:1305334
Available from: 2019-04-16 Created: 2019-04-16 Last updated: 2019-08-29Bibliographically approved
In thesis
1. Wicked Problems in Engineering Education: Preparing Future Engineers to Work for Sustainability
Open this publication in new window or tab >>Wicked Problems in Engineering Education: Preparing Future Engineers to Work for Sustainability
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Wicked problems i Ingenjörsutbildningen : Att förbereda blivande ingenjörer för att arbeta för hållbarhet
Abstract [en]

Most engineering education today does not adequately prepare students to contribute to sustainability. For example, engineering students often do not learn how to address complex and ill-structured sustainability problems that involve different stakeholders, value conflicts,and uncertainty; such problems are also called wicked problems. Efforts to improve engineering education in this regard are hampered by a lack of research on how engineering education can prepare students to address wicked problems.This thesis aims to address this gap in two parts. The research described in Part 1 aimed toexplore what engineering students need to learn to be able to address wicked problems. For this purpose, a pre-study literature review and two empirical studies were conducted. For the empirical studies, engineering students were interviewed and the interviews were analyzedusing qualitative content analysis (Study 1) and a phenomenographic approach (Study 2). The research in Part 2 aimed to link the theoretical results from Part 1 to engineering education practice by focusing on teaching and assessment. The research in Part 2 comprises two empirical studies in which pragmatic action research (Study 3) and design-based research (Study 4) was used.The results of the research include (a) a description of engineering education-specific challenges in addressing wicked problems; (b) 3 descriptions of wicked problems and design principles for wicked problem descriptions; (c) description of four different approaches that engineering students have used in addressing a wicked problem; (d) 22 intended learning outcomes, 3 assessment approaches, an analytic assessment rubric, and a rubric-based intervention for students’ ability to integratively address wicked problems; (e) validity, reliability, and utility evaluations of the assessment rubric; and (f) insights about students’ performance, their approaches to wicked problems, and affordances for learning in differently scaffolded activities during the rubric-based intervention.Conclusions from the research include that an integrative approach to wicked problems is most appropriate, that students are able to use such an approach, but that they may need instructional support to do so. Conclusions further include that strong cognitive scaffoldingwith a highly detailed assessment rubric can support students’ understanding of the nature of wicked problems and students’ performance in written responses to wicked problems, but possibly also limit affordances for deep and transferable learning.

Abstract [sv]

Många ingenjörsutbildningar brister idag i hur väl de förbereder sina studenter för att arbetaför hållbarhet. Exempelvis får många ingenjörsstudenter otillräcklig träning i att hantera komplexa hållbarhetsproblem som karakteriseras av värdekonflikter mellan intressenter och en stor grad av osäkerhet. Sådana problem kallas på engelska wicked problems. Det saknas idag forskning om hur ingenjörsutbildningar kan förbereda sina studenter för att hantera wicked problems, vilket gör det svårt för universitet och lärare att förbättra utbildningen i det avseendet.Den här avhandlingen består av två delar. Forskningen som beskrivs i Del 1 syftade till att undersöka vad ingenjörsstudenter behöver lära sig för att kunna hantera wicked problems. Detta gjordes genom en litteraturbaserad förstudie och två empiriska studier. De empiriska studierna baserades på intervjuer med ingenjörsstudenter. Intervjuerna analyserades genomkvalitativ innehållsanalys (Studie 1) och fenomenografi (Studie 2). Forskningen i Del 2 syftade till att länka de teoretiska resultaten från Del 1 till utbildningspraktiken genom att fokusera på undervisning och bedömning. Forskningen i Del 2 består av två empiriska studier där pragmatisk aktionsforskning (Studie 3) och design-baserad forskning (Studie 4) användes.Forskningsresultaten omfattar (a) en beskrivning av ingenjörsstudenters specifika utmaningari att hantera wicked problems; (c) 3 beskrivningar av wicked problems och designprinciper för att beskriva wicked problems; (c) beskrivning av fyra sätt på vilka ingenjörsstudenter har hanterat ett wicked problem; (d) 22 lärandemål, 3 bedömningsmetoder, en bedömningsmatrisoch en utbildningsmodul för att utveckla ingenjörsstudenters förmåga att hantera wicked problems; (e) utvärdering av validitet, reliabilitet och användbarhet av bedömningsmatrisen; och (f) insikter om studenters prestationer, deras sätt att ta sig an wicked problems och lärandemöjligheter som uppstod när studenter fick olika typer av stöd i en utbildningsmodul.En rad slutsatser kan dras från dessa resultat, bland annat att en integrativ ansats är lämplig för att hantera wicked problems, att studenter ofta har förmågan att använda en sådan ansats, men att de kan behöva undervisningsstöd för att faktiskt göra det. En annan viktig slutsats är att starkt kognitivt stöd i form av en detaljerad bedömningsmatris kan stödja studenternasförståelse av vad som karakteriserar wicked problems och därmed leda till bättre prestationernär studenter ombeds att hantera wicked problems i skriftliga prov, men att samma kognitiva stöd också kan minska möjligheter för djupinlärning.

Place, publisher, year, edition, pages
Göteborg: Chalmers tekniska högskola, 2017. p. 132
Series
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny Serie, ISSN 0346-718X ; 4283
Keywords
wicked problem, engineering education, sustainability, phenomenography, assessment, rubric, design-based research, action research, perspective shift, ill-structured problems, problem-solving
National Category
Didactics
Research subject
didactics of natural science
Identifiers
urn:nbn:se:umu:diva-158222 (URN)978-91-7597-602-0 (ISBN)
Public defence
2017-09-01, 13:15 (English)
Opponent
Supervisors
Available from: 2021-06-14 Created: 2019-04-16 Last updated: 2021-06-14
2. Engineering students’ ways of relating to wicked sustainability problems
Open this publication in new window or tab >>Engineering students’ ways of relating to wicked sustainability problems
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This licentiate thesis constitutes a part of a larger research effort that aims to provide a theoretical framework for understanding and working with engineering students’ ways of relating to wicked sustainability problems (WSPs) on the basis of conceptual, empirical, and practical considerations. Thus, the project aims to contribute to an understanding of how engineering education can support students in developing the capabilities that they need to actively participate in discussions about sustainable development and to constructively deal with WSPs.

The concept of perspectives provides a point of departure for the research. Paper I introduces a conceptual framework for conceiving of and communicating about perspectives and perspective processes in the context of engineering education for sustainable development. In Paper II, four qualitatively different ways in which engineering students understand and approach a specific WSP are described based on an empirical study. The results from the study suggest that a partial experience of the complexity of WSPs may lower rather than increase students’ abilities to deal with WSPs, and that educators therefore should pay attention to support the students in progressing beyond this level. A combination of the results from the two papers provides input for discussions about what it may mean to fully appreciate the complexity of WSPs, and a basis for more practice-oriented research in line with the aim of this research.

Place, publisher, year, edition, pages
Göteborg: Chalmers tekniska högskola, 2014. p. 39
Series
Technical report, ISSN 1651-4769 ; 13
Keywords
Engineering education, Engineering students, Wicked sustainability problems, Sustainable development, Perspective, Phenomenography, Complexity
National Category
Didactics
Research subject
didactics of natural science
Identifiers
urn:nbn:se:umu:diva-158223 (URN)
Presentation
2014-02-24, Piazza, Patricia, Forskningsgången 6, Campus Lindholmen, Göteborg, 13:15 (English)
Opponent
Supervisors
Available from: 2023-02-22 Created: 2019-04-16 Last updated: 2023-02-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lönngren, Johanna

Search in DiVA

By author/editor
Lönngren, Johanna
In the same journal
Research in science education
Didactics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 316 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf