Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stainless Steel as A Bi-Functional Electrocatalyst – A Top-Down Approach
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-5080-8273
2019 (English)In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, no 13, article id 2128Article in journal (Refereed) Published
Abstract [en]

For a hydrogen economy to be viable, clean and economical hydrogen production methods are vital. Electrolysis of water is a promising hydrogen production technique with zero emissions, but suffer from relatively high production costs. In order to make electrolysis of water sustainable, abundant, and efficient materials has to replace expensive and scarce noble metals as electrocatalysts in the reaction cells. Herein, we study activated stainless steel as a bi-functional electrocatalyst for the full water splitting reaction by taking advantage of nickel and iron suppressed within the bulk. The final electrocatalyst consists of a stainless steel mesh with a modified surface of layered NiFe nanosheets. By using a top down approach, the nanosheets stay well anchored to the surface and maintain an excellent electrical connection to the bulk structure. At ambient temperature, the activated stainless steel electrodes produce 10 mA/cm(2) at a cell voltage of 1.78 V and display an onset for water splitting at 1.68 V in 1M KOH, which is close to benchmarking nanosized catalysts. Furthermore, we use a scalable activation method using no externally added electrocatalyst, which could be a practical and cheap alternative to traditionally catalyst-coated electrodes.

Place, publisher, year, edition, pages
MDPI , 2019. Vol. 12, no 13, article id 2128
Keywords [en]
water splitting, electrolysis, bifunctional, electrocatalysts, hydrogen evolution reaction, oxygen olution reaction, sustainable, stainless steel, nano
National Category
Other Chemical Engineering Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-162337DOI: 10.3390/ma12132128ISI: 000477043900092PubMedID: 31269744Scopus ID: 2-s2.0-85068826298OAI: oai:DiVA.org:umu-162337DiVA, id: diva2:1343456
Available from: 2019-08-16 Created: 2019-08-16 Last updated: 2022-04-04Bibliographically approved
In thesis
1. Electrocatalysts for sustainable hydrogen energy: disordered and heterogeneous nanomaterials
Open this publication in new window or tab >>Electrocatalysts for sustainable hydrogen energy: disordered and heterogeneous nanomaterials
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With the current global greenhouse gas emissions, our remaining carbon budget is depleted in only 7 years. After that, several biophysical systems are predicted to collapse such as the arctic ice, coral reefs and the permafrost, leading to potentially irreversible consequences. Our emissions are strongly correlated to access of energy and even if we are aware of the planetary emergency today, our emissions still continue to grow. Electrical vehicles have the possibility to reduce the emissions in the transportation sector significantly. However, these vehicles are still expensive and impractical for long-distance or heavy transportation. While political actions and technological development are essential to keep prices down, the driving dis- tance can be increased by replacing the batteries for onboard electricity production. 

In hydrogen fuel cells, electricity is produced by combining hydrogen gas (H2) and oxygen with only water as the by-product and if employed in electrical vehicles, distances of 500 km are enabled with a refueling time in 5 minutes. For other uses than in vehicles, H2 is also promising for large-scale electricity storage and for several industrial processes such as manufacturing CO2-free steel, ammonia and synthetic fuels. However, today most H2 production methods relies on fossil fuels and releases huge amounts of CO2. 

Electrolysis of water is an alternative production method where H2, along with oxygen are produced from water. To split the water, electricity has to be added and if renewable energy sources are used, the method has zero emissions and is considered most promising for a sustainable hydrogen energy economy. The tech- nique is relatively expensive compared to the fossil fuel-based methods and relies on rare noble metals such as platinum as catalysts for decreasing the required energy to split water. For large scale productions, these metals need to be replaced by more sustainable and abundant catalysts to lower the cost and minimize the environmental impacts. 

In this thesis we have investigated such candidates for the water splitting reaction but also to some extent for the oxygen reduction reaction in fuel cells. By combining theory and experiments we hope to aid in the development and facilitate a transition to clean hydrogen energy. We find among other things that i) defects in catalytic materials plays a significant role the performance and efficiency, and that ii) heterogeneity influence the adsorption energies of reaction intermediates and hence the catalytic efficiency and iii) while defects are not often studied for electrocatalytic reactions, these may inspire for novel materials in the future. 

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2021. p. 88
Keywords
Water splitting, Electrochemistry, Nanomaterials, Density functional theory, Hydrogen evolution, MoS2, Fuel cell
National Category
Condensed Matter Physics
Research subject
nanomaterials; Physics; Physical Chemistry
Identifiers
urn:nbn:se:umu:diva-180130 (URN)978-91-7855-482-9 (ISBN)978-91-7855-481-2 (ISBN)
Public defence
2021-03-11, BIO.A.206 – Aula Anatomica, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2021-02-18 Created: 2021-02-15 Last updated: 2021-02-16Bibliographically approved

Open Access in DiVA

fulltext(4870 kB)254 downloads
File information
File name FULLTEXT01.pdfFile size 4870 kBChecksum SHA-512
3656af7e6cf2cd465f2a6acab6946a31fbcc964cd51b4aabae2f4d26f6b00f10f1bdf30fdb7197311f910c043788dd4be90bb767c024b7cdc87ad7ef92ee510e
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Ekspong, JoakimWågberg, Thomas

Search in DiVA

By author/editor
Ekspong, JoakimWågberg, Thomas
By organisation
Department of Physics
In the same journal
Materials
Other Chemical EngineeringCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 254 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1018 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf