Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep brain stimulation in the caudal zona incerta modulates the sensorimotor cerebello-cerebral circuit in essential tremor
Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).ORCID iD: 0000-0002-3068-0065
Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).ORCID iD: 0000-0002-1407-9288
2020 (English)In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 209, article id 116511Article in journal (Refereed) Published
Abstract [en]

Essential tremor is effectively treated with deep brain stimulation (DBS), but the neural mechanisms underlying the treatment effect are poorly understood. Essential tremor is driven by a dysfunctional cerebello-thalamo-cerebral circuit resulting in pathological tremor oscillations. DBS is hypothesised to interfere with these oscillations at the stimulated target level, but it is unknown whether the stimulation modulates the activity of the cerebello-thalamo-cerebral circuit during different task states (with and without tremor) in awake essential tremor patients. To address this issue, we used functional MRI in 16 essential tremor patients chronically implanted with DBS in the caudal zona incerta. During scanning, the patients performed unilateral tremor-inducing postural holding and pointing tasks as well as rest, with contralateral stimulation turned On and Off.

We show that DBS exerts both task-dependent as well as task-independent modulation of the sensorimotor cerebello-cerebral regions (p ​≤ ​0.05, FWE cluster-corrected for multiple comparisons). Task-dependent modulation (DBS ​× ​task interaction) resulted in two patterns of stimulation effects. Firstly, activity decreases (blood oxygen level-dependent signal) during tremor-inducing postural holding in the primary sensorimotor cortex and cerebellar lobule VIII, and activity increases in the supplementary motor area and cerebellar lobule V during rest (p ​≤ ​0.05, post hoc two-tailed t-test). These effects represent differences at the effector level and may reflect DBS-induced tremor reduction since the primary sensorimotor cortex, cerebellum and supplementary motor area exhibit less motor task-activity as compared to the resting condition during On stimulation. Secondly, task-independent modulation (main effect of DBS) was observed as activity increase in the lateral premotor cortex during all motor tasks, and also during rest (p ​≤ ​0.05, post hoc two-tailed t-test). This task-independent effect may mediate the therapeutic effects of DBS through the facilitation of the premotor control over the sensorimotor circuit, making it less susceptible to tremor entrainment.

Our findings support the notion that DBS in essential tremor is modulating the sensorimotor cerebello-cerebral circuit, distant to the stimulated target, and illustrate the complexity of stimulation mechanisms by demonstrating task-dependent as well as task-independent actions in cerebello-cerebral regions.

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 209, article id 116511
Keywords [en]
Essential tremor, Deep brain stimulation, Caudal zona incerta, Functional MRI, Cerebello-cerebral circuit
National Category
Neurology Physiology Neurosciences
Research subject
Neurosurgery; Neurology; Physiology
Identifiers
URN: urn:nbn:se:umu:diva-167200DOI: 10.1016/j.neuroimage.2019.116511ISI: 000517885100011PubMedID: 31901420Scopus ID: 2-s2.0-85077302888OAI: oai:DiVA.org:umu-167200DiVA, id: diva2:1384862
Funder
Västerbotten County CouncilAvailable from: 2020-01-11 Created: 2020-01-11 Last updated: 2023-03-24Bibliographically approved
In thesis
1. Functional brain imaging of sensorimotor dysfunction and restoration: investigations of discomplete spinal cord injury and deep brain stimulation for essential tremor
Open this publication in new window or tab >>Functional brain imaging of sensorimotor dysfunction and restoration: investigations of discomplete spinal cord injury and deep brain stimulation for essential tremor
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Funktionell hjärnavbildning av sensorimotorisk dysfunktion och behandling : undersökningar av diskompletta ryggmärgsskador och djup hjärnstimulering vid essentiell tremor
Abstract [en]

The nervous system exists to generate adaptive behaviour by processing sensory input from the body and the environment in order to produce appropriate motor output, and vice versa. Consequently, sensorimotor dysfunction is the basis of disability in most neurological pathologies. In the current thesis, I explore two conditions with different types and degrees of sensorimotor dysfunction by means of functional magnetic resonance imaging (fMRI). In part 1, I assess residual sensory connections to the brain in clinically complete spinal cord injury (SCI) with seemingly complete loss of sensorimotor function below the injury level. In part 2, fMRI is combined with deep brain stimulation (DBS) to investigate interventional mechanisms of restoring dysfunctional sensorimotor control in essential tremor (ET).

Part 1: SCI disrupts the communication between the brain and below-injury body parts, but rarely results in complete anatomical transection of the spinal cord. In studies I and II, we demonstrate somatosensory cortex activation due to somatosensory (tactile and nociceptive) stimulation on below-level insensate body parts in clinically complete SCI. The results from studies I and II indicate preserved somatosensory conduction across the spinal lesion in some cases of clinically complete SCI, as classified according to international standards. This subgroup is referred to as sensory discomplete SCI, which represents a distinct injury phenotype with an intermediate degree of injury severity between clinically complete and incomplete SCI.

Part 2: ET is effectively treated with DBS in the caudal zona incerta, but the neural mechanisms underlying the treatment effect are poorly understood. By exploring DBS mechanisms with fMRI, DBS was shown to cause modulation in the activity of the sensorimotor cerebello-cerebral regions during motor tasks (study III), but did not modulate the functional connectivity during resting-state (study IV).

fMRI is a valuable tool to investigate sensorimotor dysfunction and restoration in SCI and DBS-treated ET. There is evidence for sensory discomplete SCI in about half of the patients with clinically complete SCI. DBS modulates DBS modulation of the activity in the sensorimotor cerebello-cerebral circuit during motor tasks, but not during resting-state, is action-dependent.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2022. p. 136
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2194
Keywords
Sensorimotor control, fMRI, discomplete spinal cord injury, essential tremor, deep brain stimulation, cerebello-thalamo-cerebral circuit
National Category
Neurosciences Neurology
Research subject
Physiology; Neurosurgery; Neurology; Rehabilitation Medicine
Identifiers
urn:nbn:se:umu:diva-197840 (URN)978-91-7855-837-7 (ISBN)978-91-7855-838-4 (ISBN)
Public defence
2022-08-29, Hörsal Betula, Målpunkt L, Norrlands universitetssjukhus, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2022-08-16 Created: 2022-07-14 Last updated: 2022-08-09Bibliographically approved

Open Access in DiVA

fulltext(2597 kB)461 downloads
File information
File name FULLTEXT01.pdfFile size 2597 kBChecksum SHA-512
f5bc30515615745f321a64e05555baccb3a5399372dafbd199491c3457eaeafbcfb7b1df008ac31897ba0b39095f2d814017f8f7cb6c4b6f38265db5aee17053
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Awad, AmarBlomstedt, PatricWestling, GöranEriksson, Johan

Search in DiVA

By author/editor
Awad, AmarBlomstedt, PatricWestling, GöranEriksson, Johan
By organisation
Umeå Centre for Functional Brain Imaging (UFBI)Department of Integrative Medical Biology (IMB)Clinical Neuroscience
In the same journal
NeuroImage
NeurologyPhysiologyNeurosciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 461 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 880 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf