Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Method for Identification of Mechanical Response of Motor Units in Skeletal Muscle Voluntary Contractions using Ultrafast Ultrasound Imaging: Simulations and Experimental Tests
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0003-4328-5467
Department of Clinical Neurophysiology, Department of Neurosciences, University Hospital, Uppsala University, Sweden.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0002-3423-2083
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. (Mathematical Statistics)ORCID-id: 0000-0001-5673-620X
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 8, s. 50299-50311Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The central nervous system coordinates movement through forces generated by motor units (MUs) in skeletal muscles. To analyze MUs function is essential in sports, rehabilitation medicine applications, and neuromuscular diagnostics. The MUs and their function are studied using electromyography. Typically, these methods study only a small muscle volume (1 mm3) or only a superficial (< 1 cm) volume of the muscle. Here we introduce a method to identify so-called mechanical units, i.e., the mechanical response of electrically active MUs, in the whole muscle (4x4 cm, cross-sectional) under voluntary contractions by ultrafast ultrasound imaging and spatiotemporal decomposition. We evaluate the performance of the method by simulation of active MUs' mechanical response under weak contractions. We further test the experimental feasibility on eight healthy subjects. We show the existence of mechanical units that contribute to the tissue dynamics in the biceps brachii at low force levels and that these units are similar to MUs described by electromyography with respect to the number of units, territory sizes, and firing rates. This study introduces a new potential neuromuscular functional imaging method, which could be used to study a variety of questions on muscle physiology that previously were difficult or not possible to address.

Ort, förlag, år, upplaga, sidor
IEEE, 2020. Vol. 8, s. 50299-50311
Nyckelord [en]
Biomedical engineering, Blind source separation, Physiology, Ultrasonic imaging
Nationell ämneskategori
Medicinsk bildbehandling Fysiologi Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-168944DOI: 10.1109/ACCESS.2020.2980053ISI: 000524898700010Scopus ID: 2-s2.0-85082382191OAI: oai:DiVA.org:umu-168944DiVA, id: diva2:1414593
Forskningsfinansiär
Vetenskapsrådet, 2015-04461Kempestiftelserna, JCK-1115Tillgänglig från: 2020-03-13 Skapad: 2020-03-13 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Identification of single motor units in ultrafast ultrasound image sequences of voluntary skeletal muscle contractions
Öppna denna publikation i ny flik eller fönster >>Identification of single motor units in ultrafast ultrasound image sequences of voluntary skeletal muscle contractions
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The central nervous system controls human force production by successive recruitment of motor units in the skeletal muscles and changing their neural firing rate. The motor unit comprises a motoneuron, its innervated muscle fibers, and its axons. The motor units’ function provides the basis for diagnosing neuromuscular diseases, analysis in exercise physiology and sports science, and prosthetic control. Electromyography is the gold standard to measure and analyze motor units under voluntary contractions, but the technique is limited in its field of view. Recent studies have demonstrated the possibility of using imaging techniques to study motor units providing a large field of view. However, these studies are based on electrical stimulation of the muscle, and therefore only provide partial information on the motor unit’s function in contrast to voluntary contractions. 

The overall purpose of this thesis was to develop methods to identify and analyze motor units in ultrafast ultrasound image sequences of voluntary skeletal muscle contractions for neuromuscular diagnostics and muscle contraction characterization. The thesis is based on four studies. 

In the first study, a methodological pipeline was developed to identify motor units by decomposing image sequences into spatiotemporal components. The firing pattern and territory of the components were evaluated using an in-house developed simulation model. It showed that this pipeline identified 75-95% of the simulated motor units at low force levels. The territory estimation had a 50-80% sensitivity and 100% specificity, and the firing pattern estimation had a 90% agreement with the true firing pattern. In general, the method’s performance decreased for more than 20 active motor units. Experimental isometric contractions from healthy subjects were recorded for feasibility assessment. The results showed that the number of components increased with force level, where the number of components at 1%, 2.5%, and 5% maximal voluntary contraction averaged 7, 9, and 12, respectively. The territory diameter (5-6 mm), contraction duration (40-50 ms), and firing rate (11-12 Hz) were similar for all force levels. Thus, the results were similar to motor units’ known characteristics, suggesting that these components could be motor units. 

In the second study, the proposed pipeline was validated using ultrafast ultrasound and state-of-the-art needle electromyography simultaneously. The results showed that the method could identify 31% of the motor units in low force voluntary isometric contractions, and possible explanations for the unidentified 69% were discussed. The conclusion was that the proposed pipeline can identify motor units.

The third study focused on evaluating the influence of different decomposition algorithms on performance of identifying single motor units in the data from study 2. The results showed that a decomposition algorithm is required for motor unit identification. The algorithms performed similarly in estimating firing patterns and they did not influence the motor unit twitch waveform. It was also shown that the algorithms identify different motor units, where some identified completely different units. These results suggest that the precise choice of decomposition algorithm is not critical, and there may be an improvement potential to detect more motor units. 

In the fourth study, data from the second study was used to estimate single motor units’ contractile parameters based on a subset of the data (14 motor unit contractions). Multiple single motor unit’s contraction parameters were estimated using two models. Both models’ contractile parameters were consistent and agreed with previous literature. The former and more detailed model had a better experimental fit, whereas the latter model captured the “average behavior” with fewer parameters. It was found that the single twitch waveforms within a motor unit change shape during a voluntary isometric contraction at a low force level. These results suggest that the motor unit’s contractile parameters can be estimated using ultrafast ultrasound image sequences in voluntary isometric contractions. 

In summary, a methodological pipeline to identify motor units was developed, evaluated, and validated. The key module in the pipeline, i.e., decomposition algorithm, was evaluated by comparing different algorithms’ influence on identifying single motor units. Finally, the pipeline output can be used for estimating motor units’ contractile parameters. This pipeline may contribute to neuromuscular diagnostics and muscle contraction characterization. In general, it may allow the study of various motor unit-related questions that previously were difficult or not possible to address. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2021. s. 68
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2127
Nyckelord
ultrafast ultrasound, motor units, decomposition, skeletal muscle, voluntary contractions, electromyography, twitch, imaging
Nationell ämneskategori
Fysiologi Medicinsk bildbehandling
Identifikatorer
urn:nbn:se:umu:diva-187016 (URN)978-91-7855-586-4 (ISBN)978-91-7855-587-1 (ISBN)
Disputation
2021-09-22, Bergasalen, Norrlands universitetssjukhus, Umeå, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2015-04461
Tillgänglig från: 2021-09-01 Skapad: 2021-08-30 Senast uppdaterad: 2021-10-19Bibliografiskt granskad

Open Access i DiVA

fulltext(3608 kB)222 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 3608 kBChecksumma SHA-512
43516d89979ae162b3695196522a98fbc0cfed0be1bc4453016d2a7012571b9fa52b557227ebe501671c0ea6f7b9e9f4ad49babf1675043a5098691f47bcce81
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Rohlén, RobinStoverud, Karen-HeleneYu, JunGrönlund, Christer

Sök vidare i DiVA

Av författaren/redaktören
Rohlén, RobinStoverud, Karen-HeleneYu, JunGrönlund, Christer
Av organisationen
RadiofysikInstitutionen för matematik och matematisk statistik
I samma tidskrift
IEEE Access
Medicinsk bildbehandlingFysiologiSannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 230 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 546 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf