Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
How the waveguide acoustic black hole works: A study of possible damping mechanisms
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-0473-3263
Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden.ORCID-id: 0000-0001-8704-9584
2022 (Engelska)Ingår i: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, Vol. 151, nr 6, s. 4279-4290Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The acoustic black hole (ABH) effect in waveguides is studied using frequency-domain finite element simulations of a cylindrical waveguide with an embedded ABH termination composed of retarding rings. This design is adopted from an experimental study in the literature, which surprisingly showed, contrary to the structural counterpart, that the addition of damping material to the end of the waveguide does not significantly reduce the reflection coefficient any further. To investigate this unexpected behavior, we model different damping mechanisms involved in the attenuation of sound waves in this setup. A sequence of computed pressure distributions indicates occurrences of frequency-dependent resonances in the device. The axial position of the cavity where the resonance occurs can be predicted by a more elaborate wall admittance model than the one that was initially used to study and design ABHs. The results of our simulations show that at higher frequencies, the visco-thermal losses and the damping material added to the end of the setup do not contribute significantly to the performance of the device. Our results suggest that the primary source of damping, responsible for the low reflection coefficients at higher frequencies, is local absorption effects at the outer surface of the cylinder.

Ort, förlag, år, upplaga, sidor
2022. Vol. 151, nr 6, s. 4279-4290
Nyckelord [en]
Acoustic black hole, Finite element method, Helmholtz equation
Nationell ämneskategori
Strömningsmekanik och akustik Teknisk mekanik Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:umu:diva-198676DOI: 10.1121/10.0011788ISI: 000818623100001PubMedID: 35778217Scopus ID: 2-s2.0-85133707077OAI: oai:DiVA.org:umu-198676DiVA, id: diva2:1687981
Forskningsfinansiär
Vetenskapsrådet, Swedish Research CouncilTillgänglig från: 2022-08-17 Skapad: 2022-08-17 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Ingår i avhandling
1. Computational analysis and design optimization for acoustic devices
Öppna denna publikation i ny flik eller fönster >>Computational analysis and design optimization for acoustic devices
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis focuses on material distribution topology optimization for acoustic waveguides. The limitations of the material distribution approach are discussed in the context of acoustic waveguides with extensive viscous and thermal boundary losses. An extension of the material distribution method is introduced which is capable of incorporating these boundary losses in the optimization process. Furthermore, a computational analysis of waveguide acoustic black holes (WABs) is also provided followed by a topology optimization approach for the conceptual design of a WAB with enhanced wave-focusing capabilities, utilizing the novel method introduced in the first part of the thesis.  The thesis commences with a comprehensive literature review to set the context for the subsequent research. The material distribution topology optimization is then discussed in detail, focusing on the design of a transition section for impedance matching between two cylindrical waveguides with different radii to maximize planar wave transmission. The linear wave propagation in the device is modeled using the Helmholtz equation and solved utilizing the finite element method to obtain acoustic pressure distribution. Nonlinear density filters are used to impose a size control on the design, and the design optimization problem is formulated and solved utilizing the method of moving asymptotes (MMA) with the sensitivity information provided through an ad-joint method. Selected results are provided for the considered design optimization problem. We expanded the analysis to encompass viscothermal acoustics and introduced a novel material distribution method capable of incorporating complex interface conditions. The new method is then applied to design acoustic absorbers with the aim of maximizing boundary losses in a targeted frequency range. The selected results represent the effectiveness of the proposed method.  The thesis further explores the limitations of the classical ribbed design of WABs in achieving true wave-focusing capabilities. To address this, a design optimization problem is formulated to obtain a conceptual design of a WAB. Utilizing the novel material distribution method for viscothermal acoustics introduced in this thesis, the optimization problem is solved, and the optimized design is compared with the results of a classical lossless approach and the ribbed design WAB. The numerical simulations demonstrate the superior wave-focusing capabilities of the optimized design, especially when incorporating boundary losses in the optimization process.   

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 57
Serie
Report / UMINF, ISSN 0348-0542 ; 23.05
Nyckelord
Design optimization, computational analysis, viscothermal acoustics, material distribution topology optimization, acoustic black holes, finite element method
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:umu:diva-214089 (URN)978-91-8070-146-4 (ISBN)978-91-8070-147-1 (ISBN)
Disputation
2023-09-29, NAT.D 300, Naturvetarhuset, Umeå, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-09-08 Skapad: 2023-09-04 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

fulltext(4579 kB)202 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4579 kBChecksumma SHA-512
ea1db2760c936a9a9863066369ed73e05bfd2c99cfbdea113a8f28b53fa3bd25be9708e40cdb8993afe457f89c37e7f8869ebf52a5fd2d78cdfa2469dd2c9b2e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Mousavi, AbbasBerggren, MartinWadbro, Eddie

Sök vidare i DiVA

Av författaren/redaktören
Mousavi, AbbasBerggren, MartinWadbro, Eddie
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Journal of the Acoustical Society of America
Strömningsmekanik och akustikTeknisk mekanikBeräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 202 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 283 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf