Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Map equation centrality: community-aware centrality based on the map equation
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0001-7881-2496
Umeå University, Faculty of Science and Technology, Department of Computing Science.ORCID iD: 0000-0003-4072-8795
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-7181-9940
2022 (English)In: Applied Network Science, E-ISSN 2364-8228, Vol. 7, no 1, article id 56Article in journal (Refereed) Published
Abstract [en]

To measure node importance, network scientists employ centrality scores that typically take a microscopic or macroscopic perspective, relying on node features or global network structure. However, traditional centrality measures such as degree centrality, betweenness centrality, or PageRank neglect the community structure found in real-world networks. To study node importance based on network flows from a mesoscopic perspective, we analytically derive a community-aware information-theoretic centrality score based on network flow and the coding principles behind the map equation: map equation centrality. Map equation centrality measures how much further we can compress the network's modular description by not coding for random walker transitions to the respective node, using an adapted coding scheme and determining node importance from a network flow-based point of view. The information-theoretic centrality measure can be determined from a node's local network context alone because changes to the coding scheme only affect other nodes in the same module. Map equation centrality is agnostic to the chosen network flow model and allows researchers to select the model that best reflects the dynamics of the process under study. Applied to synthetic networks, we highlight how our approach enables a more fine-grained differentiation between nodes than node-local or network-global measures. Predicting influential nodes for two different dynamical processes on real-world networks with traditional and other community-aware centrality measures, we find that activating nodes based on map equation centrality scores tends to create the largest cascades in a linear threshold model.

Place, publisher, year, edition, pages
Springer, 2022. Vol. 7, no 1, article id 56
Keywords [en]
Community-aware, Centrality, Map equation, Random walk, Hufman coding
National Category
Computational Mathematics Other Computer and Information Science
Identifiers
URN: urn:nbn:se:umu:diva-199603DOI: 10.1007/s41109-022-00477-9ISI: 000841239800002Scopus ID: 2-s2.0-85136094020OAI: oai:DiVA.org:umu-199603DiVA, id: diva2:1697924
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)Swedish Research Council, 2016-00796Available from: 2022-09-22 Created: 2022-09-22 Last updated: 2022-09-30Bibliographically approved
In thesis
1. Through the coding-lens: community detection and beyond
Open this publication in new window or tab >>Through the coding-lens: community detection and beyond
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Nätverksklustring, nätverkscentralitet och länkprediktion ur ett kodningsperspektiv
Abstract [en]

We live in a highly-connected world and find networks wherever we look: social networks, public transport networks, telecommunication networks, financial networks, and more. These networks can be immensely complex, comprising potentially millions or even billions of inter-connected objects. Answering questions such as how to control disease spreading in contact networks, how to optimise public transport networks, or how to diversify investment portfolios requires understanding each network's function and working principles.

Network scientists analyse the structure of networks in search of communities: groups of objects that form clusters and are more connected to each other than the rest. Communities form the building blocks of networks, corresponding to their sub-systems, and allow us to represent networks with coarse-grained models. Analysing communities and their interactions helps us unravel how networks function.

In this thesis, we use the so-called map equation framework, an information-theoretic community-detection approach. The map equation follows the minimum description length principle and assumes complete data in networks with one node type. We challenge these assumptions and adapt the map equation for community detection in networks with two node types and incomplete networks where some data is missing. We move beyond detecting communities and derive approaches for how, based on communities, we can identify influential objects in networks, and predict links that do not (yet) exist.

Abstract [sv]

Vi lever i en värld som blir mer och mer sammanlänkad. Vart vi än tittar hittar vi nätverk: sociala nätverk, kollektivtrafiknätverk, telekommunikationsnätverk, finansiella nätverk och så vidare. Dessa nätverk kan vara oerhört komplexa och omfatta potentiellt miljoner eller till och med miljarder sammankopplade objekt. För att kunna besvara frågor som: hur kontrollerar vi sjukdomsspridning i kontaktnät, hur optimerar vi kollektivtrafiksnätverk eller hur diversifierar vi investeringsportföljer, krävs det att vi förstår varje nätverks funktion och principer.

Nätverksforskare analyserar strukturen i nätverk i jakt på kluster: grupper av objekt som är mer kopplade till varandra än till resten av nätverket. Kluster utgör byggstenarna, eller delsystemen, i nätverken och låter oss representera dessa med förenklade modeller. Att analysera kluster och deras interaktioner hjälper oss att ta reda på hur nätverk fungerar.

I denna avhandling vidareutvecklar vi den så kallade kartekvationen, en informationsteoretisk klusterdetekteringsmetod. Kartekvationen följer principen om minsta beskrivningslängd och förutsätter fullständiga data i nätverk som bara består av en typ av noder. Vi utmanar dessa antaganden och anpassar kartekvationen för klusterdetektering i nätverk som består av två typer av noder och ofullständiga nätverk där viss data saknas. Vi dyker också djupare in i kluster och härleder lösningar för hur vi, baserat på kluster, kan identifiera inflytelserika objekt i nätverk och förutsäga länkar som (ännu) inte existerar.

Abstract [de]

Wir leben in einer hochgradig vernetzten Welt und finden Netzwerke wo auch immer wir hinschauen: soziale Netzwerke, öffentliche Verkehrsnetze, Telekommunikationsnetze, Finanznetzwerke und mehr. Diese Netzwerke können immens komplex sein und potenziell Millionen oder sogar Milliarden miteinander verbundener Objekten umfassen. Um beantworten zu können, wie wir die Ausbreitung von Krankheiten in Kontaktnetzwerken kontrollieren, öffentliche Verkehrsnetze optimieren oder Anlageportfolios diversifizieren können, müssen wir die Funktionsweise und Arbeitsprinzipien dieser Netzwerke verstehen.

Netzwerkwissenschaftler analysieren die Struktur von Netzwerken auf der Suche nach Communities: Gruppen von Objekten, die Cluster bilden und stärker miteinander verbunden sind als mit dem Rest. Communities repräsentieren die Bausteine von Netzwerken, entsprechen ihren Subsystemen und erlauben es uns, Netzwerke mit vereinfachten Modellen darzustellen. Communities und ihre Interaktionen untereinander zu verstehen hilft uns dabei, zu enträtseln, wie Netzwerke funktionieren.

In dieser Doktorarbeit verwenden wir die sogenannte Kartengleichung, ein informationstheoretischer Ansatz zur Community-Erkennung. Die Kartengleichung folgt dem Prinzip der minimalen Beschreibungslänge und nimmt an, dass Netzwerke einen Knotentypen haben und ihre zugrundeliegenden Daten vollständig sind. Wir stellen diese Annahmen infrage und passen die Kartengleichung zur Community-Erkennung in Netzwerken mit zwei Knotentypen und unvollständigen Daten an. Darüber hinaus leiten wir Ansätze ab, die, basierend auf Communities, einflussreiche Objekte in Netzwerken identifizieren und (noch) nicht existierende Verbindungen zwischen Objekten vorhersagen.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2022. p. 103
Keywords
community detection, map equation, Huffman coding, network centrality, link prediction
National Category
Computer Sciences Other Computer and Information Science Computational Mathematics
Identifiers
urn:nbn:se:umu:diva-199631 (URN)978-91-7855-828-5 (ISBN)978-91-7855-827-8 (ISBN)
Public defence
2022-10-21, NAT.D.470, Naturvetarhuset, Umeå, 09:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Available from: 2022-09-30 Created: 2022-09-27 Last updated: 2022-09-27Bibliographically approved

Open Access in DiVA

fulltext(3435 kB)142 downloads
File information
File name FULLTEXT01.pdfFile size 3435 kBChecksum SHA-512
970f4d23336e9147ba2cbd93f7245d0d33f78360bcd97f53b17316c4ef28a5815871c5e46c590460ec4db2e821e6bc7391d5e66974fd58ce8f7c7bfa24a13752
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Blöcker, ChristopherNieves, Juan CarlosRosvall, Martin

Search in DiVA

By author/editor
Blöcker, ChristopherNieves, Juan CarlosRosvall, Martin
By organisation
Department of PhysicsDepartment of Computing Science
In the same journal
Applied Network Science
Computational MathematicsOther Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 142 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 426 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf