Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnesium and cell energetics: at the junction of metabolism of adenylate and non-adenylate nucleotides
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-8685-9665
Department of Biology, Memorial University of Newfoundland, NL, St. John's, Canada.
2023 (English)In: Journal of plant physiology (Print), ISSN 0176-1617, E-ISSN 1618-1328, Vol. 280, article id 153901Article in journal (Refereed) Published
Abstract [en]

Free magnesium (Mg2+) represents a powerful signal arising from interconversions of adenylates (ATP, ADP and AMP). This is a consequence of the involvement of adenylate kinase (AK) which equilibrates adenylates and uses defined species of Mg-complexed and Mg-free adenylates in both directions of its reaction. However, cells contain also other reversible Mg2+-dependent enzymes that equilibrate non-adenylate nucleotides (uridylates, cytidylates and guanylates), i.e. nucleoside monophosphate kinases (NMPKs) and nucleoside diphosphate kinase (NDPK). Here, we propose that AK activity is tightly coupled to activities of NMPK and NDPK, linking adenylate equilibrium to equilibria of other nucleotides, and with [Mg2+] controlling the ratios of Mg-chelated and Mg-free nucleotides. This coupling establishes main hubs for adenylate-driven equilibration of non-adenylate nucleotides, with [Mg2+] acting as signal arising from all nucleotides rather than adenylates only. Further consequences involve an overall adenylate control of UTP-, GTP- and CTP-dependent pathways and the availability of substrates for RNA and DNA synthesis.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 280, article id 153901
Keywords [en]
Adenylate kinase, Guanylate kinase, Magnesium signaling, Nucleoside diphosphate kinase, Nucleoside monophosphate kinase, Uridylate-cytidylate kinase
National Category
Botany Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-202227DOI: 10.1016/j.jplph.2022.153901ISI: 000911805900001PubMedID: 36549033Scopus ID: 2-s2.0-85144811958OAI: oai:DiVA.org:umu-202227DiVA, id: diva2:1725169
Available from: 2023-01-10 Created: 2023-01-10 Last updated: 2023-09-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Kleczkowski, Leszek A.

Search in DiVA

By author/editor
Kleczkowski, Leszek A.
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Journal of plant physiology (Print)
BotanyBiochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf