Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mapping the semi-nested community structure of 3D chromosome contact networks
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-6618-8232
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0003-3079-5679
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.ORCID iD: 0000-0003-4738-4788
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0003-3174-8145
2022 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Mammalian DNA folds into 3D structures that facilitate and regulate genetic processes such as transcription, DNA repair, and epigenetics. Several insights derive from chromosome capture methods, such as Hi-C, which allow researchers to construct contact maps depicting 3D interactions among all DNA segment pairs. These maps show a complex cross-scale organization spanning megabase-pair compartments to short-ranged DNA loops. To better understand the organizing principles, several groups analyzed Hi-C data assuming a Russian-doll-like nested hierarchy where DNA regions of similar sizes merge into larger and larger structures. Apart from being a simple and appealing description, this model explains, e.g., the omnipresent chequerboard pattern seen in Hi-C maps, known as A/B compartments, and foreshadows the co-localization of some functionally similar DNA regions. However, while successful, this model is incompatible with the two competing mechanisms that seem to shape a significant part of the chromosomes’ 3D organization: loop extrusion and phase separation. This paper aims to map out the chromosome’s actual folding hierarchy from empirical data. To this end, we take advantage of Hi-C experiments and treat the measured DNA-DNA interactions as a weighted network. From such a network, we extract 3D communities using the generalized Louvain algorithm. This algorithm has a resolution parameter that allows us to scan seamlessly through the community size spectrum, from A/B compartments to topologically associated domains (TADs). By constructing a hierarchical tree connecting these communities, we find that chromosomes are more complex than a perfect hierarchy. Analyzing how communities nest relative to a simple folding model, we found that chromosomes exhibit a significant portion of nested and non-nested community pairs alongside considerable randomness. In addition, by examining nesting and chromatin types, we discovered that nested parts are often associated with active chromatin. These results highlight that crossscale relationships will be essential components in models aiming to reach a deep understanding of the causal mechanisms of chromosome folding.

Place, publisher, year, edition, pages
2022.
National Category
Other Computer and Information Science Other Physics Topics
Identifiers
URN: urn:nbn:se:umu:diva-207315OAI: oai:DiVA.org:umu-207315DiVA, id: diva2:1753297
Available from: 2023-04-26 Created: 2023-04-26 Last updated: 2023-04-27
In thesis
1. Exploring the multiscale 3D architecture of human chromosome contact networks
Open this publication in new window or tab >>Exploring the multiscale 3D architecture of human chromosome contact networks
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Utforskande av den flerskaliga 3D-arkitekturen hos mänskliga kromosomnätverk​
Abstract [en]

Cells regulate genes to coordinate essential functions allowing cells to grow, divide, specialize, and respond to stresses. While regulatory proteins are the most common way to control these genes, the DNA’s 3D structure also plays a critical role as it affects how proteins access genes and how regulatory DNA elements interact over large genomic distances. This thesis explores the latter aspect of gene regulation by mapping DNA’s 3D multiscale architecture and exploring the within-scale variability.

To study these aspects, we analyzed empirical DNA-DNA contact data from a technique known as Hi-C. This technique measures the contact frequency between pairs of points on DNA. To infer multiscale DNA 3D structures from this data set, we adopt and develop a community detection framework that finds the groups of interconnected DNA regions. Rooted in network science, this approach allowed us to study the DNA’s ensemble-averaged 3D organization while embracing its complexity and variability.

In this work, we mapped DNA’s multiscale 3D architecture and demonstrated how our community detection algorithm charts the structural scales in regimes that are often opaque to other computational tools. We also addressed several specific research questions. First, we explored cross-scale 3D structures, quantifying to what extent their interactions are hierarchical. We also determined the scales where the 3D structures seem most robust and quantified the DNA's structural ambiguities. Additionally, we explored the association between DNA's 3D architecture and epigenetic states. Finally, we demonstrated how our framework applies to another DNA contact data set (HiChIP) that may be useful to better understand spatial rearrangements in cancer cells. 

Abstract [sv]

Celler reglerar gener för att koordinera grundläggande funktioner som möjliggör celldelning, specialisering och stressrespons. Även om celler oftast använder reglerande proteiner för att kontrollera dessa gener, spelar även DNA:s 3D-struktur en kritisk roll eftersom den påverkar hur enkelt proteiner kommer åt generna och hur reglerande DNA-element interagerar över stora genetiska avstånd. Denna avhandling utforskar den senare aspekten av genreglering genom att kartlägga DNA:s skalberoende 3D-arkitektur samt strukturvariabiliteten inom varje skala.

För att studera dessa aspekter analyserade vi empiriskt DNA-DNA-kontaktdata från en teknik som kallas Hi-C. Denna teknik mäter kontaktfrekvensen mellan parvisa DNA-segment. För att hitta DNA:s 3D-strukturer från Hi-C data utvecklar en metod som hittar grupper av tätt sammanlänkade DNA-regioner på olika nivåer. Denna metod är utvecklad inom nätverksforskning, och den hjälper oss att studera DNA:s genomsnittliga 3D-organisation över en cellpopulation. 

I detta arbete kartlade vi DNA:s 3D-struktur och visade hur vår algoritm kan detektera tätt sammanlänkade grupper av DNA-segment (”communities”) som andra beräkningsverktyg har svårt att hitta. Vi använde vår metod för att undersökte flera specifika forskningsfrågor. För det första utforskade vi i vilken utsträckning DNA-interaktioner är hierarkiska. Vi fastställde också nivåer där 3D-strukturerna verkar vara mest robusta och där de är mest instabila. Dessutom utforskade vi sambandet mellan DNA:s 3D-arkitektur och epigenetiskt tillstånd. Slutligen visade vi hur vår metod kan appliceras på et annat DNA-kontakt data än Hi-C (HiChIP). Vår studie kan vara användbar för att bättre förstå kritiska omkopplingar av DNA-kontakter i cancerceller.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2023. p. 75
Keywords
community detection, DNA 3D organization, Hi-C, network science, DNA-DNA contact data
National Category
Bioinformatics (Computational Biology) Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-207681 (URN)978-91-8070-065-8 (ISBN)978-91-8070-066-5 (ISBN)
Public defence
2023-05-24, NAT.D.410, Naturvetarhuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2023-05-03 Created: 2023-04-27 Last updated: 2025-05-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

BioRxiv (preprint)

Authority records

Bernenko, DoloresLee, Sang HoonStenberg, PerLizana, Ludvig

Search in DiVA

By author/editor
Bernenko, DoloresLee, Sang HoonStenberg, PerLizana, Ludvig
By organisation
Department of PhysicsDepartment of Ecology and Environmental Sciences
Other Computer and Information ScienceOther Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 249 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf