Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Safety-critical computer vision: an empirical survey of adversarial evasion attacks and defenses on computer vision systems
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-7119-7646
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-2633-6798
2023 (Engelska)Ingår i: Artificial Intelligence Review, ISSN 0269-2821, E-ISSN 1573-7462, Vol. 56, s. 217-251Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Considering the growing prominence of production-level AI and the threat of adversarial attacks that can poison a machine learning model against a certain label, evade classification, or reveal sensitive data about the model and training data to an attacker, adversaries pose fundamental problems to machine learning systems. Furthermore, much research has focused on the inverse relationship between robustness and accuracy, raising problems for real-time and safety-critical systems particularly since they are governed by legal constraints in which software changes must be explainable and every change must be thoroughly tested. While many defenses have been proposed, they are often computationally expensive and tend to reduce model accuracy. We have therefore conducted a large survey of attacks and defenses and present a simple and practical framework for analyzing any machine-learning system from a safety-critical perspective using adversarial noise to find the upper bound of the failure rate. Using this method, we conclude that all tested configurations of the ResNet architecture fail to meet any reasonable definition of ‘safety-critical’ when tested on even small-scale benchmark data. We examine state of the art defenses and attacks against computer vision systems with a focus on safety-critical applications in autonomous driving, industrial control, and healthcare. By testing a combination of attacks and defenses, their efficacy, and their run-time requirements, we provide substantial empirical evidence that modern neural networks consistently fail to meet established safety-critical standards by a wide margin.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023. Vol. 56, s. 217-251
Nyckelord [en]
Adversarial machine learning, Computer vision, Autonomous vehicles, Safety-critical
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-211212DOI: 10.1007/s10462-023-10521-4ISI: 001014695900002Scopus ID: 2-s2.0-85162639161OAI: oai:DiVA.org:umu-211212DiVA, id: diva2:1777455
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2019.0352Tillgänglig från: 2023-06-29 Skapad: 2023-06-29 Senast uppdaterad: 2024-01-08Bibliografiskt granskad

Open Access i DiVA

fulltext(3751 kB)39 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 3751 kBChecksumma SHA-512
592aab3c3743e1adc210dd71dc2e6b02ed33c092918f8ee2b4e565a21b6baac3b50aece1c3e1a2bb9dae6fd2f0b10097cbf595e1a159ce6f809e234c46d90ae5
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Meyers, CharlesLöfstedt, TommyElmroth, Erik

Sök vidare i DiVA

Av författaren/redaktören
Meyers, CharlesLöfstedt, TommyElmroth, Erik
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Artificial Intelligence Review
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 112 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 355 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf