Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Climate variability, socio-economic conditions and vulnerability to malaria infections in Mozambique 2016–2018: a spatial temporal analysis
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa. Heidelberg Institute of Global Health and Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany.ORCID-id: 0000-0003-4030-0449
Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique.
School of Global Public Health, New York University, NY, New York, United States.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Frontiers In Public Health, ISSN 2296-2565, Vol. 11, artikel-id 1162535Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Temperature, precipitation, relative humidity (RH), and Normalized Different Vegetation Index (NDVI), influence malaria transmission dynamics. However, an understanding of interactions between socioeconomic indicators, environmental factors and malaria incidence can help design interventions to alleviate the high burden of malaria infections on vulnerable populations. Our study thus aimed to investigate the socioeconomic and climatological factors influencing spatial and temporal variability of malaria infections in Mozambique.

Methods: We used monthly malaria cases from 2016 to 2018 at the district level. We developed an hierarchical spatial–temporal model in a Bayesian framework. Monthly malaria cases were assumed to follow a negative binomial distribution. We used integrated nested Laplace approximation (INLA) in R for Bayesian inference and distributed lag nonlinear modeling (DLNM) framework to explore exposure-response relationships between climate variables and risk of malaria infection in Mozambique, while adjusting for socioeconomic factors.

Results: A total of 19,948,295 malaria cases were reported between 2016 and 2018 in Mozambique. Malaria risk increased with higher monthly mean temperatures between 20 and 29°C, at mean temperature of 25°C, the risk of malaria was 3.45 times higher (RR 3.45 [95%CI: 2.37–5.03]). Malaria risk was greatest for NDVI above 0.22. The risk of malaria was 1.34 times higher (1.34 [1.01–1.79]) at monthly RH of 55%. Malaria risk reduced by 26.1%, for total monthly precipitation of 480 mm (0.739 [95%CI: 0.61–0.90]) at lag 2 months, while for lower total monthly precipitation of 10 mm, the risk of malaria was 1.87 times higher (1.87 [1.30–2.69]). After adjusting for climate variables, having lower level of education significantly increased malaria risk (1.034 [1.014–1.054]) and having electricity (0.979 [0.967–0.992]) and sharing toilet facilities (0.957 [0.924–0.991]) significantly reduced malaria risk.

Conclusion: Our current study identified lag patterns and association between climate variables and malaria incidence in Mozambique. Extremes in climate variables were associated with an increased risk of malaria transmission, peaks in transmission were varied. Our findings provide insights for designing early warning, prevention, and control strategies to minimize seasonal malaria surges and associated infections in Mozambique a region where Malaria causes substantial burden from illness and deaths.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2023. Vol. 11, artikel-id 1162535
Nyckelord [en]
Bayesian, climate variability, DHS, DLNM, INLA, malaria vulnerability, Mozambique, spatio-temporal
Nationell ämneskategori
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi Arbetsmedicin och miljömedicin
Forskningsämne
klimatförändringar; infektionssjukdomar
Identifikatorer
URN: urn:nbn:se:umu:diva-211167DOI: 10.3389/fpubh.2023.1162535ISI: 001005894100001PubMedID: 37325319Scopus ID: 2-s2.0-85162000346OAI: oai:DiVA.org:umu-211167DiVA, id: diva2:1779418
Forskningsfinansiär
Sida - Styrelsen för internationellt utvecklingssamarbeteTillgänglig från: 2023-07-04 Skapad: 2023-07-04 Senast uppdaterad: 2023-07-04Bibliografiskt granskad

Open Access i DiVA

fulltext(3076 kB)187 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3076 kBChecksumma SHA-512
758b36e6f0e17c81078bd52ecbd07d64d7f294511da8c976054854bcd75fb28e1fd73bac3100d0da7dbd0f5c8503f6737c9dfda80b1819a47ff9b923e3613dd3
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Armando, Chaibo JoseRocklöv, JoacimSewe, Maquins Odhiambo

Sök vidare i DiVA

Av författaren/redaktören
Armando, Chaibo JoseRocklöv, JoacimSewe, Maquins Odhiambo
Av organisationen
Avdelningen för hållbar hälsa
I samma tidskrift
Frontiers In Public Health
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologiArbetsmedicin och miljömedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 187 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 324 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf