Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Topology optimization of a waveguide acoustic black hole for enhanced wave focusing
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-0473-3263
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden.ORCID-id: 0000-0001-8704-9584
2024 (engelsk)Inngår i: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, Vol. 155, nr 1, s. 742-756Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The waveguide acoustic black hole (WAB) effect is a promising approach for controlling wave propagation in various applications, especially for attenuating sound waves. While the wave-focusing effect of structural acoustic black holes has found widespread applications, the classical ribbed design of waveguide acoustic black holes (WABs) acts more as a resonance absorber than a true wave-focusing device. In this study, we employ a computational design optimization approach to achieve a conceptual design of a WAB with enhanced wave-focusing properties. We investigate the influence of viscothermal boundary losses on the optimization process by formulating two distinct cases: one neglecting viscothermal losses and the other incorporating these losses using a recently developed material distribution topology optimization technique. We compare the performance of optimized designs in these two cases with that of the classical ribbed design. Simulations using linearized compressible Navier–Stokes equations are conducted to evaluate the wave-focusing performance of these different designs. The results reveal that considering viscothermal losses in the design optimization process leads to superior wave-focusing capabilities, highlighting the significance of incorporating these losses in the design approach. This study contributes to the advancement of WAB design and opens up new possibilities for its applications in various fields.

sted, utgiver, år, opplag, sider
Acoustical Society of America , 2024. Vol. 155, nr 1, s. 742-756
Emneord [en]
Acoustical properties, Acoustic phenomena, Acoustic waves, Black holes, Finite-element analysis, Mathematical optimization, Boundary integral methods, Optimization problems, Liquid solid interfaces, Navier Stokes equations
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-214110DOI: 10.1121/10.0024470ISI: 001153140300001PubMedID: 38284824Scopus ID: 2-s2.0-85183806282OAI: oai:DiVA.org:umu-214110DiVA, id: diva2:1794208
Forskningsfinansiär
eSSENCE - An eScience CollaborationSwedish Research Council, 2018-03546Swedish Research Council, 2022-03783
Merknad

Originally included in thesis in manuscript form. 

Tilgjengelig fra: 2023-09-05 Laget: 2023-09-05 Sist oppdatert: 2024-02-14bibliografisk kontrollert
Inngår i avhandling
1. Computational analysis and design optimization for acoustic devices
Åpne denne publikasjonen i ny fane eller vindu >>Computational analysis and design optimization for acoustic devices
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis focuses on material distribution topology optimization for acoustic waveguides. The limitations of the material distribution approach are discussed in the context of acoustic waveguides with extensive viscous and thermal boundary losses. An extension of the material distribution method is introduced which is capable of incorporating these boundary losses in the optimization process. Furthermore, a computational analysis of waveguide acoustic black holes (WABs) is also provided followed by a topology optimization approach for the conceptual design of a WAB with enhanced wave-focusing capabilities, utilizing the novel method introduced in the first part of the thesis.  The thesis commences with a comprehensive literature review to set the context for the subsequent research. The material distribution topology optimization is then discussed in detail, focusing on the design of a transition section for impedance matching between two cylindrical waveguides with different radii to maximize planar wave transmission. The linear wave propagation in the device is modeled using the Helmholtz equation and solved utilizing the finite element method to obtain acoustic pressure distribution. Nonlinear density filters are used to impose a size control on the design, and the design optimization problem is formulated and solved utilizing the method of moving asymptotes (MMA) with the sensitivity information provided through an ad-joint method. Selected results are provided for the considered design optimization problem. We expanded the analysis to encompass viscothermal acoustics and introduced a novel material distribution method capable of incorporating complex interface conditions. The new method is then applied to design acoustic absorbers with the aim of maximizing boundary losses in a targeted frequency range. The selected results represent the effectiveness of the proposed method.  The thesis further explores the limitations of the classical ribbed design of WABs in achieving true wave-focusing capabilities. To address this, a design optimization problem is formulated to obtain a conceptual design of a WAB. Utilizing the novel material distribution method for viscothermal acoustics introduced in this thesis, the optimization problem is solved, and the optimized design is compared with the results of a classical lossless approach and the ribbed design WAB. The numerical simulations demonstrate the superior wave-focusing capabilities of the optimized design, especially when incorporating boundary losses in the optimization process.   

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2023. s. 57
Serie
Report / UMINF, ISSN 0348-0542 ; 23.05
Emneord
Design optimization, computational analysis, viscothermal acoustics, material distribution topology optimization, acoustic black holes, finite element method
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-214089 (URN)978-91-8070-146-4 (ISBN)978-91-8070-147-1 (ISBN)
Disputas
2023-09-29, NAT.D 300, Naturvetarhuset, Umeå, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-09-08 Laget: 2023-09-04 Sist oppdatert: 2023-09-05bibliografisk kontrollert

Open Access i DiVA

fulltext(4101 kB)15 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4101 kBChecksum SHA-512
7559630961609f50f2c7d6f2fe3581c44d947d8439c1059412457dcdf8a6f6444653159653e295f3bb8be24ac6209a17680f9bf852732f57a86543bdbe2daa9b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Mousavi, AbbasBerggren, MartinHägg, LinusWadbro, Eddie

Søk i DiVA

Av forfatter/redaktør
Mousavi, AbbasBerggren, MartinHägg, LinusWadbro, Eddie
Av organisasjonen
I samme tidsskrift
Journal of the Acoustical Society of America

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 15 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 97 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf