Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An empirical configuration study of a common document clustering pipeline
Umeå University, Faculty of Science and Technology, Department of Computing Science. Adlede, Umeå, Sweden.ORCID iD: 0000-0002-4366-7863
Adlede, Umeå, Sweden.ORCID iD: 0000-0001-6601-5190
Umeå University, Faculty of Science and Technology, Department of Computing Science.ORCID iD: 0000-0001-7349-7693
2023 (English)In: Northern European Journal of Language Technology (NEJLT), ISSN 2000-1533, Vol. 9, no 1Article in journal (Refereed) Published
Abstract [en]

Document clustering is frequently used in applications of natural language processing, e.g. to classify news articles or create topic models. In this paper, we study document clustering with the common clustering pipeline that includes vectorization with BERT or Doc2Vec, dimension reduction with PCA or UMAP, and clustering with K-Means or HDBSCAN. We discuss the inter- actions of the different components in the pipeline, parameter settings, and how to determine an appropriate number of dimensions. The results suggest that BERT embeddings combined with UMAP dimension reduction to no less than 15 dimensions provides a good basis for clustering, regardless of the specific clustering algorithm used. Moreover, while UMAP performed better than PCA in our experiments, tuning the UMAP settings showed little impact on the overall performance. Hence, we recommend configuring UMAP so as to optimize its time efficiency. According to our topic model evaluation, the combination of BERT and UMAP, also used in BERTopic, performs best. A topic model based on this pipeline typically benefits from a large number of clusters.

Place, publisher, year, edition, pages
Linköping University Electronic Press, 2023. Vol. 9, no 1
Keywords [en]
document clustering, topic modeling, dimension reduction, clustering, BERT, doc2vec, UMAP, PCA, K-Means, HDBSCAN
National Category
Natural Language Processing
Identifiers
URN: urn:nbn:se:umu:diva-214455DOI: 10.3384/nejlt.2000-1533.2023.4396OAI: oai:DiVA.org:umu-214455DiVA, id: diva2:1797692
Funder
Swedish Foundation for Strategic Research, ID19-0055Available from: 2023-09-15 Created: 2023-09-15 Last updated: 2025-03-10Bibliographically approved
In thesis
1. Evaluating document clusters through human interpretation
Open this publication in new window or tab >>Evaluating document clusters through human interpretation
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Utvärdering av dokumentkluster genom mänsklig tolkning
Abstract [en]

Document clustering is a technique for organizing and discovering patterns in large collections of text, often used in applications such as news aggregation and contextual advertising. An example is the automatic grouping of news articles by theme, which is the focus of this thesis. For a clustering to be successful, typically the resulting clusters need to appear interpretable and coherent to a human. However, there is a lack of efficient methods to reliably assess the quality of a clustering in terms of human-perceived coherence, which is essential for ensuring its usefulness in real-world applications.

To address the lack of evaluation methods for document clustering focusing on human interpretation, we introduced Cluster Interpretation and Precision from Human Exploration (CIPHE). CIPHE tasks human evaluators to explore document samples from a cluster and collects their interpretation. The interpretation is collected through a standardized survey and then processed with the framework metrics to yield the cluster precision and characteristics. This thesis presents and discusses the development process of CIPHE. The feasibility of performing the exploratory tasks of CIPHE in a crowdsourcing environment was investigated, which resulted in insights on how to formulate instructions. Additionally, CIPHE was confirmed to identify characteristics other than the main theme such as the negative emotional response.

CIPHE was paired with a standard clustering pipeline to evaluate its capabilities and limitations. The pipeline is widely applied for its adaptability and conceptual simplicity, and also being part of the popular topic model BERTopic. The empirical results of applying CIPHE suggest that the pipeline, when integrated with a Transformer-based language model, generally yields coherent clusters.

Additionally, topic models have a similar aim as document clustering which is to automate the corpus processing and present the underlying themes to a human. Topic modeling has rich research on the human interpretation of topic coherence. In the thesis, the human interpretation collected with CIPHE was related to established research in topic coherence. Specifically, the human interpretation collected with CIPHE was used to highlight limitations with the keyword representations that topic coherence evaluation relies on.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. p. 44
Series
Report / UMINF, ISSN 0348-0542 ; 25.03
Keywords
document clustering, topic modeling, information retrieval, human evaluation, human-in-the-loop, news clustering, natural language processing, topic coherence, human interpretation
National Category
Natural Language Processing
Research subject
Computer Science
Identifiers
urn:nbn:se:umu:diva-236295 (URN)9789180706469 (ISBN)9789180706476 (ISBN)
Public defence
2025-04-03, Lindellhallen 3 (UB.A.230), Samhällsvetarhuset, Umeå, 13:15 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ID19-0055
Available from: 2025-03-13 Created: 2025-03-10 Last updated: 2025-03-12Bibliographically approved

Open Access in DiVA

fulltext(2698 kB)335 downloads
File information
File name FULLTEXT01.pdfFile size 2698 kBChecksum SHA-512
ece569a5bf1ec48d0ca8a50d3ae983ab9adb8b1397fbb7f20a34eba36d8976d53e15c38dd449d953b36b551ceca09ed1c22b4c59d8d12d44ba19e4f6bbd66bdb
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Eklund, AntonDrewes, Frank

Search in DiVA

By author/editor
Eklund, AntonForsman, MonaDrewes, Frank
By organisation
Department of Computing Science
In the same journal
Northern European Journal of Language Technology (NEJLT)
Natural Language Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 335 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 585 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf