Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
M5 — Mars magnetospheric multipoint measurement mission: a multi-spacecraft plasma physics mission to Mars
Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, Heidelberg, Germany; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany; Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, Germany; Kapteyn Astronomical Institute, University of Groningen, Landleven 12, AD Groningen, Netherlands.
Department of Electronics and Nanotechnology, School of Electrical Engineering, Aalto University, Maarintie 8, Espoo, Finland.
Institute of Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Mendelssohnstr. 3, Braunschweig, Germany.
Institute of Theoretical and Computational Physics, Graz University of Technology, Graz, Austria.
Show others and affiliations
2024 (English)In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 73, no 6, p. 3235-3255Article in journal (Refereed) Published
Abstract [en]

Mars, lacking an intrinsic dynamo, is an ideal laboratory to comparatively study induced magnetospheres, which can be found in other terrestrial bodies as well as comets. Additionally, Mars is of particular interest to further exploration due to its loss of habitability by atmospheric escape and possible future human exploration. In this context, we propose the Mars Magnetospheric Multipoint Measurement Mission (M5), a multi-spacecraft mission to study the dynamics and energy transport of the Martian induced magnetosphere comprehensively. Particular focus is dedicated to the largely unexplored magnetotail region, where signatures of magnetic reconnection have been found. Furthermore, a reliable knowledge of the upstream solar wind conditions is needed to study the dynamics of the Martian magnetosphere, especially the different dayside boundary regions but also for energy transport phenomena like the current system and plasma waves. This will aid the study of atmospheric escape processes of planets with induced magnetospheres. In order to resolve the three-dimensional structures varying both in time and space, multi-point measurements are required. Thus, M5 is a five spacecraft mission, with one solar wind monitor orbiting Mars in a circular orbit at 5 Martian radii, and four smaller spacecraft in a tetrahedral configuration orbiting Mars in an elliptical orbit, spanning the far magnetotail up to 6 Mars radii with a periapsis just outside the Martian magnetosphere of 1.8 Mars radii. We not only present a detailed assessment of the scientific need for such a mission but also show the resulting mission and spacecraft design taking into account all aspects of the mission requirements and constraints such as mass, power, and link budgets. Additionally, different aspects of the mission programmatics like a possible mission timeline, cost estimates, or public outreach are shown. The common requirements for acceptance for an ESA mission are considered. The mission outlined in this paper was developed during the Alpbach Summer School 2022 on the topic of “Comparative Plasma Physics in the Universe”.

Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 73, no 6, p. 3235-3255
Keywords [en]
Atmospheric escape, Induced magnetospheres, Magnetic reconnection, Mars, Mission concept proposal, Multi-spacecraft constellation
National Category
Fusion, Plasma and Space Physics Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:umu:diva-220467DOI: 10.1016/j.asr.2023.11.032Scopus ID: 2-s2.0-85183542803OAI: oai:DiVA.org:umu-220467DiVA, id: diva2:1838553
Funder
The European Space Agency (ESA)Swedish National Space BoardAvailable from: 2024-02-16 Created: 2024-02-16 Last updated: 2025-09-19Bibliographically approved
In thesis
1. Structure of the Martian bow shock
Open this publication in new window or tab >>Structure of the Martian bow shock
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Strukturen hos Mars bogchock
Abstract [en]

A shock forms when a supersonic flow meets an obstacle. The supersonic speed of the flow ensures that information of the obstacle cannot travel in the anti-flow direction to warn the flow of the obstacle, and as such there is no chance of the flow losing enough energy and momentum other than in the shock. Shocks are ubiquitous in the universe, for example forming during the outflow from supernovas, which contribute to distributing mass across the universe when particles are accelerated at these shocks. Due to the vast distances in our universe, the shocks of our solar system are our only in-situ laboratories for studying shocks. Because of the resemblance to the bow wave in front of a ship, we call the shocks in front of planets, comets, and moons bow shocks. This thesis studies the structure of the Martian bow shock and its dependence on external and internal factors. For this purpose, we have used spacecraft observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission and from Mars Express, and numerical simulations using the kinetic hybrid model Amitis. 

In the first study, we use MAVEN data to quantify the width of the quasi-perpendicular Martian bow shock region and to study what factors affect it. We show that the magnetosonic Mach number, dynamic pressure, critical ratio, and overshoot amplitude affect the width. In the second study, we investigate the instantaneous asymmetry of the Martian bow shock using data from MAVEN. We use two methods, one single-spacecraft method, and one dual-spacecraft method. With the single-spacecraft method, we find an asymmetry with respect to the solar wind convective electric field. With the dual-spacecraft method, we find no significant asymmetry attributed to a specific cause, but we do observe strong asymmetry on a case by case basis. 

In the third paper, we present the first statistical study of jets in the Martian plasma environment using 10 years of MAVEN data. We find that jets in the Martian plasma environment are similar to jets observed in the terrestrial magnetosheath, with some notable differences such that for Martian jets the density enhancement dominates over the velocity enhancement. In the fourth study, using the hybrid model Amitis, we investigate what process brings the supersonic flow to subsonic for three different directions of the interplanetary magnetic field. We find that the more parallel the field becomes with respect to the flow direction, the more upstream disturbances form and scatter the impinging solar wind. This decreases the solar wind momentum toward Mars and leads to the planetary plasma expanding to distances past the location of the nominal shock location. In the fifth paper, we propose a space mission to Mars that would help answer many of the questions that cannot be answered with the data sets we have today.

Abstract [sv]

En chock uppstår när ett supersoniskt flöde möter ett hinder. Den supersoniska hastigheten hos flödet säkerställer att information om hindret inte hinner resa i motflödesriktning för att varna flödet om hindret, och på så sätt finns det ingen chans för flödet att förlora tillräckligt med energi och rörelsemängdsmoment förutom i en chock. Chockvågor är vanligt förekommande i universum, där de till exempel formas vid utflödet från supernovor, vilket leder till distribuering av massa i universum när partiklar accelereras vid dessa chockvågor. Tillföljd av de ofantliga avstånden i vårt universum så är chockvågorna i vårt solsystem våra enda insitu laboratorier för att studera chockar. På grund av deras likhet med bogvågor framför skepp, kallar vi chockarna framför planeter, kometer, och månar för bogchockar. Denna avhandling studerar strukturen hos Mars bogchock, och dess beroende på externa och interna faktorer. För detta ändamål har vi använt oss av rymdfarkostobservationer från MAVEN och Mars Express, och numeriska simulationer från den kinetiska hybridmodellen Amitis.

I den första studien använder vi oss av MAVEN data för att kvantifiera bredden hos den Marsianska kvasi-vinkelräta bogchocken och för att studera vilka faktorer som påverkar den. Vi visar att det magnetosoniska Machtalet, dynamiska trycket, kritiska kvoten, och översvängningssamplituden påverkar bredden. I den andra studien undersöker vi den momentana asymmetrin hos den Marsianska bogchocken med hjälp av data från rymduppdragen Mars Atmosphere and Volatile EvolutioN (MAVEN) och Mars Express. Vi använder oss av två metoder, en enfarkostmetod och en tvåfarkostmetod. Med enfarkostmetoden finner vi asymmetri med avseende på solvindens konvektiva elektriska fält. Med tvåfarkostmetoden finner vi ingen signifikant asymmetri med avseende på de studerade faktorerna, men vi observerar stor asymmetri från fall till fall. 

I den tredje studien presenterar vi den första statistiska studen av plasmajetar vid Mars, där vi använder oss av 10 år av MAVEN data. Vi finner att jetar i Mars plasmamiljö liknar jetar i Jordens magnetskikt, med vissa anmärkningsvärda skillnader, så som att för Marsianska jetar så dominerar densitetsförhöjningen över hastighetsförhöjningen. I den fjärde studien, där vi använder den kinetiska hybridmodellen Amitis, undersöker vi vilken process som resulterar i att det supersoniska flödet blir subsoniskt för tre olika interplanetära magnetfältsriktningar. Vi finner att desto mer parallellt magnetfältet blir med avseende på flödesriktningen, desto fler störningar skapas uppströms om bogchocken och sprider ut den inkommande solvinden, vilket minskar solvindsrörelsemängdsmomentet mot Mars. Detta gör också att den planetära plasman expanderar till avstånd utanför det nominella bogchocksavståndet. I den femte studien så föreslår vi ett rymduppdrag till Mars som skulle hjälpa att besvara många av de frågor som inte kan bli besvarade med de dataset vi har idag.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. p. 64
Keywords
Bow shock, Mars, solar wind, plasma physics, space plasmas, Bogchock, Mars, solvind, plasmafysik, rymdplasman
National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
urn:nbn:se:umu:diva-244321 (URN)978-91-8070-764-0 (ISBN)978-91-8070-763-3 (ISBN)
Public defence
2025-10-17, TEK.A.324, Teknikhuset, Linnaeus väg, Umeå, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-09-26 Created: 2025-09-19 Last updated: 2025-09-22Bibliographically approved

Open Access in DiVA

fulltext(3051 kB)248 downloads
File information
File name FULLTEXT01.pdfFile size 3051 kBChecksum SHA-512
2b801995b51cce308a1b15966208ee969d20fa87e95ab21907f674577802ad09f075b87fbe8fe88f777ba7d979bc26db950eb57a6a6fe3130097fdef34dac1c6
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Nesbit-Östman, Sara

Search in DiVA

By author/editor
Nesbit-Östman, Sara
By organisation
Department of Physics
In the same journal
Advances in Space Research
Fusion, Plasma and Space PhysicsAstronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
Total: 253 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 287 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf