Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: a review
Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Rome, Italy; Unit of Advanced Robotics and Human-Centered Technologies, Università Campus Bio-Medico di Roma, Rome, Italy.
Unit of Advanced Robotics and Human-Centered Technologies, Università Campus Bio-Medico di Roma, Rome, Italy.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik. Umeå universitet, Medicinska fakulteten, Institutionen för diagnostik och intervention. Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Rome, Italy.ORCID-id: 0000-0003-2621-072X
Unit of Advanced Robotics and Human-Centered Technologies, Università Campus Bio-Medico di Roma, Rome, Italy.
2024 (engelsk)Inngår i: Frontiers in Robotics and AI, E-ISSN 2296-9144, Vol. 11, artikkel-id 1341580Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Over the past few years, there has been a noticeable surge in efforts to design novel tools and approaches that incorporate Artificial Intelligence (AI) into rehabilitation of persons with lower-limb impairments, using robotic exoskeletons. The potential benefits include the ability to implement personalized rehabilitation therapies by leveraging AI for robot control and data analysis, facilitating personalized feedback and guidance. Despite this, there is a current lack of literature review specifically focusing on AI applications in lower-limb rehabilitative robotics. To address this gap, our work aims at performing a review of 37 peer-reviewed papers. This review categorizes selected papers based on robotic application scenarios or AI methodologies. Additionally, it uniquely contributes by providing a detailed summary of input features, AI model performance, enrolled populations, exoskeletal systems used in the validation process, and specific tasks for each paper. The innovative aspect lies in offering a clear understanding of the suitability of different algorithms for specific tasks, intending to guide future developments and support informed decision-making in the realm of lower-limb exoskeleton and AI applications.

sted, utgiver, år, opplag, sider
Frontiers Media S.A., 2024. Vol. 11, artikkel-id 1341580
Emneord [en]
artificial intelligence reinforcement learning, decision tree, lower extremeties, neural network, support vector machine
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-221652DOI: 10.3389/frobt.2024.1341580PubMedID: 38405325Scopus ID: 2-s2.0-85185493874OAI: oai:DiVA.org:umu-221652DiVA, id: diva2:1841711
Tilgjengelig fra: 2024-02-29 Laget: 2024-02-29 Sist oppdatert: 2024-02-29bibliografisk kontrollert

Open Access i DiVA

fulltext(7585 kB)234 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 7585 kBChecksum SHA-512
fbda188d285a5e5672f37c635f88bbde67721d85add642b9f6ad5ede7d65b5b1fd84e0defc954bd1343ede92cdad2eb5a66b7d818e1583efefb2551053ea9f70
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Soda, Paolo

Søk i DiVA

Av forfatter/redaktør
Soda, Paolo
Av organisasjonen
I samme tidsskrift
Frontiers in Robotics and AI

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 234 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 237 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf