Umeå University's logo

umu.sePublications
456789107 of 18
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring Lol proteins in gram-negative bacteria: structural analysis and interactions with antibiotics
Umeå University, Faculty of Science and Technology, Department of Chemistry. (Karina Persson Lab)ORCID iD: 0000-0001-6405-6845
2024 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Karaktärisering av Lol-systemet i gramnegativa bakterier : strukturanalys och interaktion med antibiotika (Swedish)
Abstract [en]

Antimicrobial resistance (AMR) poses an escalating global threat, with drug-resistant 'superbugs' undermining a century of medical progress. Misuse and overuse of antibiotics have accelerated the rise of resistance, while the development of new antibiotics has slowed due to economic, regulatory, and profitability challenges. This has created an urgent need for novel antibacterial targets.The outer membrane (OM) of Gram-negative bacteria represents a promising target for the development of novel antibiotics. As no current antibiotics specifically target OM assembly, it presents a unique opportunity to develop drugs against which bacteria have not yet developed resistance. 

Lipoproteins play crucial roles in OM biogenesis and bacterial virulence, with their localization to the OM facilitated by the Lol pathway, composed of the LolCDE ABC transporter, the periplasmic chaperone LolA, and the OM-anchored receptor LolB. Despite extensive biochemical, functional, and structural studies on Lol proteins in E. coli (a representative of γ-proteobacteria), our understanding of Lol proteins in other bacterial phyla and classes remains limited. Studies have shown that the components of the Lol machinery vary across different bacterial classes and phyla, making it essential to explore Lol proteins beyond E. coli to gain a comprehensive understanding of these variations. This research aims to bridge that gap by investigating Lol proteins from a diverse array of bacterial species, potentially guiding the design of narrow- or broad-spectrum antibiotics.

In this work, LolA and LolB proteins were purified and their crystal structures determined from Vibrio cholerae, Helicobacter pylori, Porphyromonas gingivalis, and Gluconobacter oxydans. Comparative structural analysis revealed that the structural determinants critical for Lol protein functionality in E. coli are not universally conserved, even within the same phylum or class of bacteria. Further, we conducted ITC binding assays with the antibiotics polymyxin and A22, demonstrating that polymyxin binding correlates with the negative surface charge potential of Lol proteins, suggesting that polymyxin B could be a potential lead compound for targeting LolA proteins in drug development.

A significant discovery was the identification of a LolB-like protein in P. gingivalis using AlphaFold, a bacterium previously thought to lack LolB. We showed by in vitro experiments that this LolB-like protein interacts specifically with LolA from P. gingivalis but not from V. cholerae or H.pylori, and its structure shares features with both LolA and LolB. Protein-membrane association assays indicated a strong affinity of the LolB-like protein for phospholipids, further suggesting its functional relevance in lipoprotein transport. Additionally, we optimized the expression of LolCDE from P. gingivalis and the subsequent purification in SMALPs, conducting preliminary cryo-EM analyses. Functional analysis indicated that LolCDE can transport triacylated lipoproteins despite the absence of the lnt gene, which is typically required for triacylation in other bacteria.

Overall, this work broadens our understanding of Lol machinery across diverse bacterial species, offering new insights into its structural and functional diversity. This expanded repertoire of Lol proteins provide a foundation for the development of antibiotics targeting the Lol pathway, a critical component of Gram-negative bacterial cell envelope biogenesis. Disrupting the Lol machinery could destabilize the bacterial OM, rendering pathogens like V. cholerae, H. pylori, and P. gingivalis more susceptible to existing antibiotics.

Abstract [sv]

Antimikrobiell resistens (AMR) utgör ett växande globalt hot, där läkemedelsresistenta 'superbakterier' underminerar ett sekel av medicinska framsteg. Missbruk och överanvändning av antibiotika har påskyndat uppkomsten av resistens, medan utvecklingen av nya antibiotika har bromsats på grund av ekonomiska, regulatoriska och lönsamhetsutmaningar. Detta har skapat ett akut behov av nya antibakteriella måltavlor. Yttermembranet (OM) hos gramnegativa bakterier utgör ett lovande mål för utvecklingen av nya antibiotika. Eftersom inga nuvarande antibiotika specifikt riktar sig mot OM-sammansättning, erbjuder det en unik möjlighet att utveckla läkemedel som bakterier ännu inte har utvecklat resistens mot.

Lipoproteiner spelar en avgörande roll i OM-biogenes och bakteriell virulens, med deras lokalisering till OM som underlättas av Lol-vägen, som består av LolCDE ABC-transportören, det periplasmiska chaperonet LolA och OM-ankrade receptorn LolB. Trots omfattande biokemiska, funktionella och strukturella studier av Lol-proteiner i E. coli (en representant för γ-proteobakterier), är vår förståelse av Lol-proteiner i andra bakteriella fyla och klasser begränsad. Studier har visat att komponenterna i Lol-maskineriet varierar mellan olika bakterieklasser och -fyla, vilket gör det viktigt att utforska Lol-proteiner utanför E. coli för att få en heltäckande förståelse av dessa variationer. Denna forskning syftar till att fylla denna lucka genom att undersöka Lol-proteiner från en mångfald av bakteriearter, vilket potentiellt kan vägleda designen av smal- eller bredspektrumantibiotika.

I detta arbete renades LolA- och LolB-proteiner och deras kristallstrukturer bestämdes från Vibrio cholerae, Helicobacter pylori, Porphyromonas gingivalis och Gluconobacter oxydans. Jämförande strukturanalys avslöjade att de strukturella determinanter som är kritiska för Lol-proteinernas funktion i E. coli inte är universellt bevarade, inte ens inom samma fylum eller bakterieklass. Vidare genomförde vi ITC-bindningsstudier med antibiotika polymyxin och A22, vilket visade att polymyxinbindning korrelerar med den negativa ytladdningspotentialen hos Lol-proteiner, vilket tyder på att polymyxin B skulle kunna vara en potentiell ledande förening för att rikta sig mot LolA-proteiner vid läkemedelsutveckling. En betydande upptäckt var identifieringen av ett LolB-liknande protein i P. gingivalis med hjälp av AlphaFold, en bakterie som tidigare ansågs sakna LolB. Vi visade genom in vitro-experiment att detta LolB-liknande protein interagerar specifikt med LolA från P. gingivalis, men inte från V. cholerae eller H. pylori, och dess struktur delar egenskaper med både LolA och LolB. Protein-membran-associationsstudier indikerade en stark affinitet hos det LolB-liknande proteinet för fosfolipider, vilket ytterligare tyder på dess funktionella relevans i lipoproteintransport. Dessutom optimerade vi uttrycket av LolCDE från P. gingivalis och den efterföljande reningen i SMALP, och genomförde preliminära cryo-EM-analyser. Funktionell analys indikerade att LolCDE kan transportera triacylaterade lipoproteiner trots avsaknaden av lnt-genen, som normalt krävs för triacylering i andra bakterier.

Sammanfattningsvis breddar detta arbete vår förståelse av Lol-maskineriet i olika bakteriearter och ger nya insikter i dess strukturella och funktionella mångfald. Detta utökade repertoar av Lol-proteiner utgör en grund för utvecklingen av antibiotika som riktar sig mot Lol-vägen, en kritisk komponent i biogenesen av gramnegativa bakteriers cellhölje. Att störa Lol-maskineriet skulle kunna destabilisera bakteriernas OM, vilket gör patogener som V. cholerae, H. pylori och P. gingivalis mer mottagliga för befintliga antibiotika.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2024. , p. 104
Keywords [en]
Outer-membrane, V.cholerae, H. pylori, P.gingivalis, G.oxydans, Lol Machinery, Antibitoics, ITC, Polymyxin, Alphafold, Structural biology, X-ray crystallography, Cryo-EM
Keywords [sv]
Yttermembran, V. cholerae, H. pylori, P.gingivalis, G.oxydans, Lol-maskineriet, Antibiotika, ITC, Polymyxin, Alphafold, Strukturell biologi, Röntgenkristallografi, Cryo-EM
National Category
Structural Biology Biochemistry and Molecular Biology
Research subject
Biochemistry; biological chemistry
Identifiers
URN: urn:nbn:se:umu:diva-229866ISBN: 978-91-8070-503-5 (print)ISBN: 978-91-8070-504-2 (electronic)OAI: oai:DiVA.org:umu-229866DiVA, id: diva2:1899402
Public defence
2024-10-17, Lilla Hörsalen, KBE301, Department of Chemistry, Umeå, 10:30 (English)
Opponent
Supervisors
Note

Paper 4 listed in thesis with title "LolCDE P.gingivalis:- expression, purification in SMALPs and initialcryo-EM analysis".

Available from: 2024-09-26 Created: 2024-09-19 Last updated: 2024-09-20Bibliographically approved
List of papers
1. A comparative analysis of lipoprotein transport proteins: LolA and LolB from Vibrio cholerae and LolA from Porphyromonas gingivalis
Open this publication in new window or tab >>A comparative analysis of lipoprotein transport proteins: LolA and LolB from Vibrio cholerae and LolA from Porphyromonas gingivalis
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 6605Article in journal (Refereed) Published
Abstract [en]

In Gram-negative bacteria, N-terminal lipidation is a signal for protein trafficking from the inner membrane (IM) to the outer membrane (OM). The IM complex LolCDE extracts lipoproteins from the membrane and moves them to the chaperone LolA. The LolA-lipoprotein complex crosses the periplasm after which the lipoprotein is anchored to the OM. In γ-proteobacteria anchoring is assisted by the receptor LolB, while a corresponding protein has not been identified in other phyla. In light of the low sequence similarity between Lol-systems from different phyla and that they may use different Lol components, it is crucial to compare representative proteins from several species. Here we present a structure-function study of LolA and LolB from two phyla: LolA from Porphyromonas gingivalis (phylum bacteroidota), and LolA and LolB from Vibrio cholerae (phylum proteobacteria). Despite large sequence differences, the LolA structures are very similar, hence structure and function have been conserved throughout evolution. However, an Arg-Pro motif crucial for function in γ-proteobacteria has no counterpart in bacteroidota. We also show that LolA from both phyla bind the antibiotic polymyxin B whereas LolB does not. Collectively, these studies will facilitate the development of antibiotics as they provide awareness of both differences and similarities across phyla.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Biochemistry and Molecular Biology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:umu:diva-207883 (URN)10.1038/s41598-023-33705-y (DOI)000997547300091 ()37095149 (PubMedID)2-s2.0-85153687027 (Scopus ID)
Funder
Swedish Research Council, 2007-08673Swedish Research Council, 2016-05009Lars Hierta Memorial Foundation
Available from: 2023-05-08 Created: 2023-05-08 Last updated: 2024-09-19Bibliographically approved
2. Structural and functional analysis of the Helicobacter pylori lipoprotein chaperone LolA
Open this publication in new window or tab >>Structural and functional analysis of the Helicobacter pylori lipoprotein chaperone LolA
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In Gram-negative bacteria, N-terminal lipidation signals the trafficking of proteins from the inner membrane to the outer membrane. The LolCDE complex in the inner membrane extracts lipoproteins and transfers them to the chaperone LolA. The LolA-lipoprotein complex traverses the  periplasm, leading to the lipoprotein's anchoring at the outer membrane. In β- and γ- proteobacteria, the receptor LolB aids in this anchoring. Given the low sequence similarity of Lol proteins across phyla and the potential use of different Lol components, it is crucial to compare representative proteins from various species. This study provides a structure-function analysis of LolA from Helicobacter pylori (ε-proteobacteria), revealing conserved structural and functional traits throughout evolution despite low sequence similarity. Notably, the binding cleft of H. pylori LolA is more open, and it lacks the critical Arg-Pro motif essential for function in γ-proteobacteria. Additionally, H. pylori LolA features an exposed leucine, suggesting a dual LolA-LolB function. Unlike other studied LolA, from other bacteria, H. pylori LolA did not bind to the antibiotic polymyxin.

Keywords
Lipoprotein transport, LolA, polymyxin, ITC, crystal structure, ε-proteobacteria
National Category
Structural Biology Biochemistry and Molecular Biology
Research subject
Biochemistry; biological chemistry
Identifiers
urn:nbn:se:umu:diva-229857 (URN)
Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2024-09-19
3. LolB-like protein from Porphyromonas gingivalis
Open this publication in new window or tab >>LolB-like protein from Porphyromonas gingivalis
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The lipoprotein transport system in Gram-negative bacteria is essential for maintaining outer membrane integrity and function. While the Lol system, including LolB, responsible for integrating lipoproteins into the outer membrane, has been well characterized in Escherichia coli, considerable variation exists across different bacterial species. Porphyromonas gingivalis, a pathogen associated with periodontal disease and a member of the Bacteroidota phylum, was previously thought to lack LolB, leaving the mechanism of lipoprotein insertion unresolved. In this study, we identify and characterize a LolB-like protein in P. gingivalis. The crystal structure of this protein was determined at 2.1 Å resolution, revealing a significantly larger binding cleft compared to E. coli LolB. Additionally, the LolB-like protein was found to interact with LolA from P. gingivalis with a dissociation constant comparable to that of the LolA-LolB interaction in E. coli. These findings offer new insights into the lipoprotein transport system in P. gingivalis and establish a foundation for further investigations into bacterial outer membrane biogenesis and potential therapeutic targets.

Keywords
Lipoprotein transport, LolB, crystal structure, bacteroidota
National Category
Structural Biology Biochemistry and Molecular Biology
Research subject
Biochemistry; biological chemistry
Identifiers
urn:nbn:se:umu:diva-229862 (URN)
Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2024-09-20
4. Expression, Purification and initial cryo-EM analysis of LolCDE membrane protein from Porphyromonas gingivalis 
Open this publication in new window or tab >>Expression, Purification and initial cryo-EM analysis of LolCDE membrane protein from Porphyromonas gingivalis 
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Gram-negative bacteria exhibit a dual-membrane structure consisting of an inner membrane (IM) and an outer membrane (OM), where lipoproteins play essential roles in various cellular processes, including OM biogenesis, cell division, and virulence. These lipoproteins are synthesized as precursors in the cytoplasm, then exported to the IM where they undergo lipid modifications, including triacylation in many species by the enzyme apolipoprotein N-acyltransferase (Lnt). Lipoproteins are subsequently extracted from the IM by the LolCDE complex, an ATP-binding cassette (ABC) transporter, and transported to the OM via LolA and LolB.In Escherichia coli, LolCDE is essential for lipoprotein transport and is an attractive target for antibiotic development. However, the mechanisms governing lipoprotein recognition and transport vary across Gram-negative bacteria. In Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, the absence of Lnt results in diacylated lipoproteins. Despite this, a lipoprotein (PG1828) from P. gingivalis was characterized as triacylated, raising the question of whether LolCDE in this species can recognize and transport triacylated lipoproteins.To investigate the structural and functional properties of P. gingivalis LolCDE, we developed an expression system and purified LolCDE using styrene–maleic acid lipid particles (SMALPs), preserving its native lipid environment. Functional assays revealed that P. gingivalis LolCDE is capable of extracting and transporting the triacylated lipoprotein PAL, despite the absence of a known Lnt enzyme in this species. Additionally, cryo-EM analysis, while at low resolution, confirmed the successful purification of intact LolCDE. Proteoliposomes assays exhibited enhanced ATPase activity in SMALPs compared to detergent-extracted samples.These findings suggest that P. gingivalis LolCDE can interact with triacylated lipoproteins in a manner similar to gamma-proteobacteria, despite differences in lipoprotein biogenesis pathways. This study provides a foundation for future structural and functional analyses of LolCDE, which may inform the development of pathogen-specific antibiotics targeting P. gingivalis

Keywords
Lipoprotein transport, LolCDE, SMALPs, cryo-EM
National Category
Structural Biology Biochemistry and Molecular Biology
Research subject
Biochemistry; biological chemistry
Identifiers
urn:nbn:se:umu:diva-229864 (URN)
Note

In thesis listed with title "LolCDE P.gingivalis:- expression, purification in SMALPs and initialcryo-EM analysis". 

Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2024-09-20

Open Access in DiVA

fulltext(7600 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 7600 kBChecksum SHA-512
6afd5273b8d2ea0e586a7229054c7f5ac1ac689a09f9cd2acd36452bafecfab3f14fbb3817b2eeb7f09e04c24096a212a12cac3053f84f35c5459b8c5cb5ad8d
Type fulltextMimetype application/pdf
spikblad(216 kB)0 downloads
File information
File name SPIKBLAD01.pdfFile size 216 kBChecksum SHA-512
673c1cda9077ac6e352bc8882e8e1733bb5395ced2a8dcbf933d3b181df3235f46eac0b53b04b735fa29fb8ee0708a3823d805e4eff3463ceb58ad752c5a32ee
Type spikbladMimetype application/pdf

Authority records

Jaiman, Deepika

Search in DiVA

By author/editor
Jaiman, Deepika
By organisation
Department of Chemistry
Structural BiologyBiochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
456789107 of 18
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf