Open this publication in new window or tab >>Show others...
2018 (English)In: Frontiers in Immunology, E-ISSN 1664-3224, Vol. 9, article id 1968Article in journal (Refereed) Published
Abstract [en]
Neutrophils are crucial for the human innate immunity and constitute the majority of leukocytes in circulation. Thus, blood neutrophil counts serve as a measure for the immune system's functionality. Hematological patients often have low neutrophil counts due to disease or chemotherapy. To increase neutrophil counts and thereby preventing infections in high-risk patients, recombinant G-CSF is widely used as adjunct therapy to stimulate the maturation of neutrophils. In addition, G-CSF is utilized to recruit stem cells (SCs) into the peripheral blood of SC donors. Still, the actual functionality of neutrophils resulting from G-CSF treatment remains insufficiently understood. We tested the ex vivo functionality of neutrophils isolated from blood of G-CSF-treated healthy SC donors. We quantified chemotaxis, oxidative burst, and phagocytosis before and after treatment and detected significantly reduced chemotactic activity upon G-CSF treatment. Similarly, in vitro treatment of previously untreated neutrophils with G-CSF led to reduced chemotactic activity. In addition, we revealed that this effect persists in the allogeneic SC recipients up to 4 weeks after neutrophil engraftment. Our data indicates that neutrophil quantity, as a sole measure of immunocompetence in high-risk patients should be considered cautiously as neutrophil functionality might be affected by the primary treatment.
Place, publisher, year, edition, pages
Frontiers Media S.A., 2018
Keywords
neutrophil, granulocyte colony stimulating factor (G-CSF), allogeneic transplant, chemotaxis, hematopoietic stern cell donor
National Category
Immunology in the medical area
Identifiers
urn:nbn:se:umu:diva-152255 (URN)10.3389/fimmu.2018.01968 (DOI)000444324800001 ()30254629 (PubMedID)2-s2.0-85053168114 (Scopus ID)
Funder
Västerbotten County Council
2018-10-032018-10-032025-01-15Bibliographically approved