Characterization and improvement of light-emitting electrochemical cells
2025 (English) Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The light-emitting electrochemical cell (LEC) is an emerging electroluminescent technology, which is attractive since it can deliver bright area emission at low voltage from thin and flexible devices that can be cost- and energy-efficiently fabricated by scalable printing techniques. This opens up for applications where current light emitting diode (LED) and organic light emitting diode (OLED) technologies fall short, primarily in terms of cost, sustainability and form factor. Many projected LEC applications are portable (and powered by an integrated energy storage device or by integrated wireless energy harvesting) in the realm of, for instance, MedTech, packaging, signage, security and wearables, where the available input energy is limited. Thus, achieving a high brightness at high emission efficiency, i.e. the efficiency at which the device converts electric energy to emitted light from the device structure, is critical. However, this requires a detailed understanding of the complex operational mechanism of the LEC.
When the LEC is electrically powered, the mobile ions in the active material reorganize in situ to form injection-enabling electric double layers followed by electrochemical p- and n-type doping and the formation of a p-n junction region. The emission zone (EZ), located in the p-n junction region where the injected electrons and holes meet and light is generated, is dynamic in the LEC due to the in situ electrochemical doping. This complicates the analysis of the device performance since the EZ position strongly influences the outcoupling efficiency of the light generated in the p-n junction and since the EZ width plays an important role in the internal quenching mechanisms of the LEC.
In this thesis, we present a characterization method for the measurement of the dynamic EZ in an LEC, and we add to the understanding of how an efficient LEC should be designed. The EZ position is determined with the aid of the optical microcavity effect by fitting simulated to measured angle-resolved electroluminescence spectra. By using this method, we could show that the EZ position can be shifted from close to the anode towards the center of the active material in a common LEC through the inclusion of an appropriate additive into the active material, which is very attractive since it resulted in a 60 % improvement of the emission efficiency. Secondly, we combined this method with so-called “efficiency roll-off” measurements (i.e. the drop in emission efficiency with increasing current density) to derive the internal loss factors. Specifically, by quantifying the change of the light outcoupling efficiency with the extracted shift of EZ position, we could identify and quantify the losses due to exciton quenching. We find that the efficiency roll-off in common singlet-exciton emitting LECs is mainly due to the singlet-exciton:polaron quenching (with the polarons being the electrons and holes in the organic semiconductor). Finally, we improved the EZ measurement method by considering the doping-dependent refractive index in the optical model, by enhancing the measured emission spectra intensity at large angles by using a half-cylinder lens, and by removing the influence from the emitter’s anisotropy with a polarizer. With this improved method, the EZ width can also be extracted, and we find that the EZ width decreases during the initial operation and that the EZ width at steady-state is ~20 % of the thickness of the active material for a common LEC device. In summary, the findings presented in this thesis contribute to a deeper understanding of the complex LEC doping structure, thus paving the way for brighter and more efficient LECs for practical applications.
Abstract [sv]
En ljusemitterande elektrokemisk cell (LEC) är en ny typ av ljusemissionsteknologi som är attraktiv eftersom den kan leverera icke-bländande ljus vid låg spänning från tunna och flexibla filmer och tillverkas kostnads- och energieffektivt med olika skalbara tryckmetoder. Detta öppnar upp för tillämpningar där dagens ljusemitterade dioder (LED) och organiska ljusemitterade dioder (OLED) faller kort, främst vad gäller kostnad, hållbarhet och formfaktor. Många potentiella LEC-tillämpningar är portabla (och drivna av en energilagringskomponent som ett batteri eller genom integrerad trådlös energiutvinning), och ett antal tillämpningsexempel finns inom medicinteknik, förpackningar, annonsering, säkerhetstryck och ”wearables”, där den tillgängliga tillförda energin är begränsad. I sådana tillämpningar är det därför viktigt med hög emissionseffektivitet, det vill säga den effektivitet med vilken en LEC omvandlar elektrisk energi till ljus.
När en spänning appliceras mellan LEC elektroderna börjar de mobila jonerna i det aktiva materialet migrera för att först bilda så kallade elektriska dubbel-lager som möjliggör effektiv elektron- och hål-injektion följt av elektrokemisk dopning som resulterar i skapandet av en pn-övergång. Emissionszonen (EZ), som ligger i pn-övergången där de injicerade elektronerna och hålen möts och ljus genereras, är dynamisk i en LEC på grund av den elektrokemiska dopningen. Detta komplicerar analysen av en LECs prestanda eftersom EZ-positionen starkt påverkar utkopplingseffektiviteten och eftersom EZ-bredden spelar en viktig roll i de interna konverteringsprocesserna. Det är med andra ord centralt att kunna mäta EZ positionen noggrant under driften av en LEC för att därigenom kunna designa LEC komponenter med hög emissionseffektivitet.
I denna avhandling presenterar vi en karakteriseringsmetod för att mäta den dynamiska EZ hos en LEC, och vi bidrar med ny förståelse för hur en energieffektiv LEC ska designas. EZ-positionen bestäms med god noggrannhet genom att anpassa simulerade till uppmätta vinkelupplösta elektroluminiscensspektra och genom att utnyttja den optiska mikrokavitetseffekten. Med denna metod har vi visat att EZ-positionen i en LEC kan flyttas från nära anoden till mitten av det aktiva materialet genom att inkludera ett lämpligt additivmaterial till det aktiva materialet; vilket var attraktivt då det resulterade i en 60 % förbättring av energieffektiviteten. För det andra har vi använt denna metod för att kunna extrahera de interna förlustfaktorerna från mätningar av ”emissions-roll-off” (dvs hur emissions-effektiviteten avtar vid ökad strömdrivning). Mer specifikt, genom att bestämma hur ljusutkopplingseffektiviteten beror på den uppmätta EZ-positionen kunde vi separera och kvantifiera excitonförlusterna. Vi fann att emissions-roll-off i vanliga singlet-emitterande LEC-komponenter huvudsakligen beror på singlet-exciton:polaron-förluster (polaroner är benämningen för elektroner och hål i organiska halvledare). Slutligen så har vi utvecklat EZ-metoden genom att inkludera: det dopningsberoende brytningsindexet i den optiska modellen, en halvcylinderlins för att höja intensiteten hos emissionsspektra, och en polarisator för att eliminera eventuellt okänd inverkan av emitterar-anisotropi. Med vår förbättrade metod kan vi bestämma även EZ-bredden, och vi finner att EZ-bredden initialt minskar med tiden samt att EZ-bredden vid steady-state motsvarar ~20 % av den totala tjockleken hos det aktiva materialet för en vanlig LEC. Sammanfattningsvis bidrar resultaten som presenteras i denna avhandling till en förbättrad mätning av, och kunskap om, den komplexa dopningsstrukturen hos LEC-komponenter, vilket lovar att bana väg för ljusstarka och mer effektivare LECar för praktiska tillämpningar.
Place, publisher, year, edition, pages Umeå University, 2025. , p. 71
Keywords [en]
Light-emitting Electrochemical Cells, Emission Zone, Organic Semiconductor, External Quantum Efficiency, Microcavity Effect
National Category
Other Physics Topics Atom and Molecular Physics and Optics Condensed Matter Physics
Research subject Physics; Materials Science; Electronics
Identifiers URN: urn:nbn:se:umu:diva-235360 ISBN: 978-91-8070-616-2 (electronic) ISBN: 978-91-8070-615-5 (print) OAI: oai:DiVA.org:umu-235360 DiVA, id: diva2:1937592
Public defence
2025-03-14, Lärosal NAT.D.400, Naturvetarhuset, Umeå, 09:00 (English)
Opponent
Supervisors
2025-02-212025-02-132025-02-14 Bibliographically approved
List of papers