Umeå University's logo

umu.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cement clinker formation in concentrated carbon dioxide atmospheres: mineralogical and reactivity insights
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Thermochemical Energy Conversion Laboratory)ORCID iD: 0000-0002-4219-1226
2025 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Cementklinkerbildning i koncentrerade koldioxidatmosfärer : fördjupade insikter i mineralogi och reaktivitet (Swedish)
Abstract [en]

The research presented in this thesis investigated cement clinker production, and involved replicating the conditions of electrified kilns using plasma heating and emerging technologies such as oxy-fuel combustion and calcium looping. These technologies aim to address key challenges in sustainable cement manufacturing by enabling carbon capture and improving process efficiency, and involve the use of high-CO2 atmospheres.

Reliable experimental and analytical methods, including high-temperature X-ray diffraction with controlled atmospheres, were developed in order to study the calcination behaviour, burnability, and phase evolution of raw meals. The key findings were that high-CO2 conditions shift the calcination temperature, decomposition, and modification of intermediate phases, and enhance the reactivity of key phases such as C2S. Accelerated C2S formation and spurrite decomposition play a critical role in improving burnability and C3S formation, reducing reliance on free lime as an intermediate.

Optimised raw meals with improved fineness and tailored chemical compositions demonstrated superior burnability and enhanced clinker reactivity as compared to conventional industrial samples. These results indicate the potential for improving raw meal formulations in order to meet the demands of conventional and emerging processes.

However, challenges persist in managing sulphur volatilisation, and alkali dynamics under high-CO2 conditions. This study emphasises the importance of addressing process factors such as material flow, heat transfer, and kiln volatilisation for ensuring industrial scalability. 

The findings of the simulation of calcium looping conditions highlight that carbonation efficiency and clinker phase formation depend on factors beyond C2S reactivity, including particle sintering and temperature dynamics.

This work provides critical insights into the implications of high-CO2 atmospheres for clinker production, offering valuable guidance for developing electrified and decarbonised cement processes. The research lays the foundation for producing durable cement in a sustainable way, with a view to reaching global climate goals by bridging the gap between laboratory-scale studies and industrial applications.

Abstract [sv]

Cementindustrin, står inför stora utmaningar i strävan efter hållbar produktion eftersom den bidrar till cirka 8 % av världens totala koldioxidutsläpp. Majoriteten av utsläppen kommer från de kemiska reaktionerna vid upphettning av kalksten samt från de fossila bränslen som används i tillverkningsprocessen av cementklinker. Trots framsteg med användning av alternativa bränslen, alternativa råmaterial och cement-ersättningsmaterial är det oundvikligt att framtidens lösning måste innefatta infångning och lagring koldioxid (CCS) direkt vid fabrikerna.

Denna forskning syftar till att skapa en djupare förståelse för hur nya CCS teknologier så som elektrifierad plasmauppvärmning, oxy-fuel-förbränning och kalciumlooping påverkar klinkerbildningen under cementtillverkning. De höga koldioxidnivåerna som dessa teknologier genererar skapar dock nya processförhållanden vars påverkan på klinkerbildningen måste förstås för att teknikerna ska kunna utvecklas effektivt och säkert.

För att undersöka effekterna har avancerade experimentella metoder utvecklats, inklusive högtemperaturröntgen, som används för att studera hur råmaterial reagerar vid upphettning och vilka mineraler som bildas i cementklinkern. Resultaten visar att höga koldioxidhalter påverkar kalkstenens nedbrytning, förändrar mineralutvecklingen och ökar reaktiviteten hos nyckelmineraler som C2S (dikalciumsilikat). Detta leder till effektivare processer, där faser i råmaterial och mellanprodukter vid hög temperatur reagerar snabbare och bryts ner mer effektivt.

Avhandlingen betonar även vikten av att optimera råmaterial för att anpassa sig till de förändrade förhållandena. Genom att justera sammansättningen och partikelstorleken har studien visat att brännbarheten hos råmaterialen och reaktiviteten hos cementet kan förbättras. Detta innebär att cementet kräver mindre energi att tillverka samtidigt som det får bättre egenskaper för användning i kombination med tillsattsmaterial. 

Vid simulering av kalciumlooping-processen framkom att karbonatiseringens effektivitet och klinkermineralbildning påverkas av flera faktorer, såsom partikelsintring och temperaturdynamik. 

Denna forskning ger värdefulla insikter i hur framtida tillverkningstekniker påverkar klinkerbildningen. Resultaten bidrar till att möjliggöra en säker och effektiv utveckling av nya teknologier som kombinerar elektrifiering och koldioxidinfångning. Detta kan minska cementindustrins klimatpåverkan och bana väg för en cementproduktion som strävar mot världens klimatmål.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. , p. 84
Keywords [en]
Portland cement, clinker, phase evolution, in-situ XRD, carbonation, calcination, hydration, carbon capture
National Category
Chemical Engineering
Research subject
Materials Science
Identifiers
URN: urn:nbn:se:umu:diva-235688ISBN: 978-91-8070-617-9 (print)ISBN: 978-91-8070-618-6 (electronic)OAI: oai:DiVA.org:umu-235688DiVA, id: diva2:1939267
Public defence
2025-03-20, KBE301-Lilla hörsalen, Umeå, 13:00 (English)
Opponent
Supervisors
Projects
CemZero RP3 - Carbon dioxide free products based on electrified manufacturing - reactivity of cement clinker with secondary cementitious materialsCemZero RP4 - Carbon dioxide free products based on electrified manufacturing - Fundamental properties of stand-alone plasma and plasma in combination with calcium-based bed materials in rotary kilns.Electrification of high temperature and flexible technologies for transforming cement, lime and pulp industry (ELECTRA)Available from: 2025-02-27 Created: 2025-02-21 Last updated: 2025-02-21Bibliographically approved
List of papers
1. Phase evolution and burnability of cement raw meal
Open this publication in new window or tab >>Phase evolution and burnability of cement raw meal
2023 (English)In: Advances in Cement Research, ISSN 0951-7197, E-ISSN 1751-7605, Vol. 35, no 12, p. 577-587Article in journal (Refereed) Published
Abstract [en]

The use of high-temperature X-ray diffraction (HT-XRD) to study the mass transfer of raw meal constituents towards forming clinker phases and the occurrence of free lime (calcium oxide), also known as burnability, was assessed. A measuring strategy with temperature ranging from 1000°C to 1450°C was developed and compared with a conventional burnability method. The free lime determined by the methods showed that HT-XRD produced good results for the evaluation of burnability. In addition, HT-XRD revealed the formation of intermediate phases, providing insight into early reactions in a cement kiln. The particle size of quartz was found to affect crystal expansion of the phase at a high temperature, subsequently affecting the formation of silica polymorphs. The different raw meals used in this study also indicate that the formation of different silica polymorphs affects the formation of C2S. The lack of knowledge regarding the influence of β-quartz on the reduction of free lime is highlighted.

Place, publisher, year, edition, pages
ICE publishing, 2023
Keywords
characterisation techniques, clinkering, clinkering reactions, phase transition
National Category
Chemical Engineering
Identifiers
urn:nbn:se:umu:diva-212913 (URN)10.1680/jadcr.23.00034 (DOI)001050073300001 ()2-s2.0-85167698690 (Scopus ID)
Funder
Swedish Energy Agency, 2020-008305Swedish Energy Agency, 50893-1
Available from: 2023-08-16 Created: 2023-08-16 Last updated: 2025-02-21Bibliographically approved
2. Properties of cement raw meals used as sorbents in a calcium looping process
Open this publication in new window or tab >>Properties of cement raw meals used as sorbents in a calcium looping process
2024 (English)In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 499, article id 156165Article in journal (Refereed) Published
Abstract [en]

Calcium looping (CaL) is a promising carbon capture and storage (CCS) technology that has the potential to significantly reduce CO2 emissions in cement production. Integrating CaL with cement production provides a viable solution to the high CO2 emissions generated during the calcination process. This study examines the behavior of two industrial cement raw meals from different sites (A-RM and B-RM) under CaL conditions, focusing on phase composition, particle size distribution, and clinker phase evolution up to 1450 °C. Calcination and CaL experiments were conducted in a CO2-rich atmosphere, with materials characterized using quantitative X-ray diffraction (Q-XRD) and high-temperature X-ray diffraction (HT-XRD). The results showed that both raw meals absorbed similar amounts of CO2 during the cyclic CaL experiments. A-RM formed C2S and other silicates, while B-RM retained more free CaO due to a less effective reaction with coarser quartz (SiO2) particles. HT-XRD revealed delayed clinker-phase evolution in the 1000–1400 °C range in CaL-treated raw meals. However, CaL-treated raw meals achieved low free CaO at 1450 °C, suggesting that optimal kiln conditions can produce the desired phase composition. These findings indicate that integrating CaL-treated raw meals into cement production requires careful optimization of operational parameters to maintain clinker quality and minimize energy consumption. Further research should focus on improving the efficiency and reactivity of CaL-treated raw meals to enhance their suitability for industrial cement production.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Calcium looping, Carbon capture, Cement clinker, Cement raw meal
National Category
Chemical Engineering
Identifiers
urn:nbn:se:umu:diva-230845 (URN)10.1016/j.cej.2024.156165 (DOI)2-s2.0-85205584222 (Scopus ID)
Funder
Swedish Energy AgencyEuropean Commission
Available from: 2024-10-17 Created: 2024-10-17 Last updated: 2025-02-21Bibliographically approved
3. Phase evolution of cement raw meal in a high-CO2 atmosphere
Open this publication in new window or tab >>Phase evolution of cement raw meal in a high-CO2 atmosphere
(English)Manuscript (preprint) (Other academic)
Keywords
Clinker, phase evolution, carbon capture and storage (CCS), plasma, CO2
National Category
Materials Chemistry Chemical Engineering
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-235689 (URN)
Available from: 2025-02-21 Created: 2025-02-21 Last updated: 2025-02-21Bibliographically approved
4. Optimising raw meals for clinker production under high-carbon-dioxide conditions
Open this publication in new window or tab >>Optimising raw meals for clinker production under high-carbon-dioxide conditions
(English)Manuscript (preprint) (Other academic)
Keywords
Cement, Clinker, XRD
National Category
Materials Chemistry Chemical Engineering
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-235690 (URN)
Available from: 2025-02-21 Created: 2025-02-21 Last updated: 2025-02-21Bibliographically approved
5. Grinding and reactivity evaluation of small clinker batches
Open this publication in new window or tab >>Grinding and reactivity evaluation of small clinker batches
(English)Manuscript (preprint) (Other academic)
Keywords
Cement, Hydration mechanism, Grinding, X-ray diffraction, Calorimetry, TGA
National Category
Building materials Materials Chemistry
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-235691 (URN)
Available from: 2025-02-21 Created: 2025-02-21 Last updated: 2025-02-21Bibliographically approved

Open Access in DiVA

fulltext(7901 kB)147 downloads
File information
File name FULLTEXT01.pdfFile size 7901 kBChecksum SHA-512
dfe57b15c6a169b92ae0d75aa95c98fdb2b47e88ffb646ff9344cf61278156c4b39a017cbca1d0ec5f5fde5ea4e04da75ed5b77edc3dbbe5691ba7112e16da34
Type fulltextMimetype application/pdf
spikblad(99 kB)30 downloads
File information
File name SPIKBLAD01.pdfFile size 99 kBChecksum SHA-512
a5345bc193afe82237be55ca05c7a689c1e62997dd421989823313211cf51b05e20140537990b88f942e50dbe3d0a8104b111d3e552c1bdd58eccf5f41cad57d
Type spikbladMimetype application/pdf

Authority records

Aguirre Castillo, José

Search in DiVA

By author/editor
Aguirre Castillo, José
By organisation
Department of Applied Physics and Electronics
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 147 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1332 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf