Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure of the Martian bow shock
Umeå University, Faculty of Science and Technology, Department of Physics. (Solar System Physics)ORCID iD: 0000-0002-6598-0666
2025 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Strukturen hos Mars bogchock (Swedish)
Abstract [en]

A shock forms when a supersonic flow meets an obstacle. The supersonic speed of the flow ensures that information of the obstacle cannot travel in the anti-flow direction to warn the flow of the obstacle, and as such there is no chance of the flow losing enough energy and momentum other than in the shock. Shocks are ubiquitous in the universe, for example forming during the outflow from supernovas, which contribute to distributing mass across the universe when particles are accelerated at these shocks. Due to the vast distances in our universe, the shocks of our solar system are our only in-situ laboratories for studying shocks. Because of the resemblance to the bow wave in front of a ship, we call the shocks in front of planets, comets, and moons bow shocks. This thesis studies the structure of the Martian bow shock and its dependence on external and internal factors. For this purpose, we have used spacecraft observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission and from Mars Express, and numerical simulations using the kinetic hybrid model Amitis. 

In the first study, we use MAVEN data to quantify the width of the quasi-perpendicular Martian bow shock region and to study what factors affect it. We show that the magnetosonic Mach number, dynamic pressure, critical ratio, and overshoot amplitude affect the width. In the second study, we investigate the instantaneous asymmetry of the Martian bow shock using data from MAVEN. We use two methods, one single-spacecraft method, and one dual-spacecraft method. With the single-spacecraft method, we find an asymmetry with respect to the solar wind convective electric field. With the dual-spacecraft method, we find no significant asymmetry attributed to a specific cause, but we do observe strong asymmetry on a case by case basis. 

In the third paper, we present the first statistical study of jets in the Martian plasma environment using 10 years of MAVEN data. We find that jets in the Martian plasma environment are similar to jets observed in the terrestrial magnetosheath, with some notable differences such that for Martian jets the density enhancement dominates over the velocity enhancement. In the fourth study, using the hybrid model Amitis, we investigate what process brings the supersonic flow to subsonic for three different directions of the interplanetary magnetic field. We find that the more parallel the field becomes with respect to the flow direction, the more upstream disturbances form and scatter the impinging solar wind. This decreases the solar wind momentum toward Mars and leads to the planetary plasma expanding to distances past the location of the nominal shock location. In the fifth paper, we propose a space mission to Mars that would help answer many of the questions that cannot be answered with the data sets we have today.

Abstract [sv]

En chock uppstår när ett supersoniskt flöde möter ett hinder. Den supersoniska hastigheten hos flödet säkerställer att information om hindret inte hinner resa i motflödesriktning för att varna flödet om hindret, och på så sätt finns det ingen chans för flödet att förlora tillräckligt med energi och rörelsemängdsmoment förutom i en chock. Chockvågor är vanligt förekommande i universum, där de till exempel formas vid utflödet från supernovor, vilket leder till distribuering av massa i universum när partiklar accelereras vid dessa chockvågor. Tillföljd av de ofantliga avstånden i vårt universum så är chockvågorna i vårt solsystem våra enda insitu laboratorier för att studera chockar. På grund av deras likhet med bogvågor framför skepp, kallar vi chockarna framför planeter, kometer, och månar för bogchockar. Denna avhandling studerar strukturen hos Mars bogchock, och dess beroende på externa och interna faktorer. För detta ändamål har vi använt oss av rymdfarkostobservationer från MAVEN och Mars Express, och numeriska simulationer från den kinetiska hybridmodellen Amitis.

I den första studien använder vi oss av MAVEN data för att kvantifiera bredden hos den Marsianska kvasi-vinkelräta bogchocken och för att studera vilka faktorer som påverkar den. Vi visar att det magnetosoniska Machtalet, dynamiska trycket, kritiska kvoten, och översvängningssamplituden påverkar bredden. I den andra studien undersöker vi den momentana asymmetrin hos den Marsianska bogchocken med hjälp av data från rymduppdragen Mars Atmosphere and Volatile EvolutioN (MAVEN) och Mars Express. Vi använder oss av två metoder, en enfarkostmetod och en tvåfarkostmetod. Med enfarkostmetoden finner vi asymmetri med avseende på solvindens konvektiva elektriska fält. Med tvåfarkostmetoden finner vi ingen signifikant asymmetri med avseende på de studerade faktorerna, men vi observerar stor asymmetri från fall till fall. 

I den tredje studien presenterar vi den första statistiska studen av plasmajetar vid Mars, där vi använder oss av 10 år av MAVEN data. Vi finner att jetar i Mars plasmamiljö liknar jetar i Jordens magnetskikt, med vissa anmärkningsvärda skillnader, så som att för Marsianska jetar så dominerar densitetsförhöjningen över hastighetsförhöjningen. I den fjärde studien, där vi använder den kinetiska hybridmodellen Amitis, undersöker vi vilken process som resulterar i att det supersoniska flödet blir subsoniskt för tre olika interplanetära magnetfältsriktningar. Vi finner att desto mer parallellt magnetfältet blir med avseende på flödesriktningen, desto fler störningar skapas uppströms om bogchocken och sprider ut den inkommande solvinden, vilket minskar solvindsrörelsemängdsmomentet mot Mars. Detta gör också att den planetära plasman expanderar till avstånd utanför det nominella bogchocksavståndet. I den femte studien så föreslår vi ett rymduppdrag till Mars som skulle hjälpa att besvara många av de frågor som inte kan bli besvarade med de dataset vi har idag.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. , p. 64
Keywords [en]
Bow shock, Mars, solar wind, plasma physics, space plasmas
Keywords [sv]
Bogchock, Mars, solvind, plasmafysik, rymdplasman
National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
URN: urn:nbn:se:umu:diva-244321ISBN: 978-91-8070-764-0 (electronic)ISBN: 978-91-8070-763-3 (print)OAI: oai:DiVA.org:umu-244321DiVA, id: diva2:1999392
Public defence
2025-10-17, TEK.A.324, Teknikhuset, Linnaeus väg, Umeå, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-09-26 Created: 2025-09-19 Last updated: 2025-09-22Bibliographically approved
List of papers
1. Width of the quasi-perpendicular bow shock region at Mars
Open this publication in new window or tab >>Width of the quasi-perpendicular bow shock region at Mars
Show others...
2024 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 689, article id A110Article in journal (Refereed) Published
Abstract [en]

Aims: We aim to quantify the width of the quasi-perpendicular Martian bow shock region to deepen the understanding of why the width is variable and which factors affect it, and to explore the implications on thermalization.

Methods: To quantify the width, 2074 quasi-perpendicular bow shock crossings from a database were studied. Upstream conditions, such as Mach numbers, dynamic pressure, ion densities, and other factors, were considered. Furthermore, the difference between the downstream and upstream temperature was measured.

Results: We found that the shock region width is correlated with the magnetosonic Mach number, the critical ratio, and the overshoot amplitude. The region was found to be anticorrelated with dynamic pressure. The width is not affected by the upstream ion density of the investigated species or by the upstream temperature. The difference between the downstream and upstream temperature is not affected by the shock region width.

Conclusions: We found that the factors that affect the stand-off distance of the bow shock, such as the magnetosonic Mach number and dynamic pressure, also affect the width. The width is also positively correlated with the overshoot amplitude, indicating that the structures are coupled or that they are affected by largely the same conditions. The lack of a correlation with the ion temperature difference indicates that the shock region width does not affect the ion thermalization.

Place, publisher, year, edition, pages
EDP Sciences, 2024
Keywords
plasmas, shock waves, methods: data analysis, planets and satellites: terrestrial planets, planet-star interactions, planets and satellites: individual: Mars
National Category
Fusion, Plasma and Space Physics Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:umu:diva-232436 (URN)10.1051/0004-6361/202348385 (DOI)001308055500028 ()2-s2.0-85215438924 (Scopus ID)
Funder
Swedish National Space Board, 108/18Swedish National Space Board, 194/19
Available from: 2024-11-29 Created: 2024-11-29 Last updated: 2025-09-22Bibliographically approved
2. Instantaneous asymmetry of the Martian bow shock: a single- and dual-spacecraft study using MAVEN and Mars express
Open this publication in new window or tab >>Instantaneous asymmetry of the Martian bow shock: a single- and dual-spacecraft study using MAVEN and Mars express
2025 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 694, article id A50Article in journal (Refereed) Published
Abstract [en]

Aims. We study the instantaneous asymmetry of the Martian bow shock during a change in the direction of the interplanetary magnetic field (IMF) and for steady-state conditions. Specifically, we study the asymmetry with regard to the convective electric field and to the crustal fields of Mars.

Methods. Two methods were used: First, a single-spacecraft method in which a switch in hemisphere in the Mars solar-electric (MSE) coordinate system was studied during a change in the direction of the interplanetary magnetic field. Second, we used a dual-spacecraft method wherein near simultaneous bow shock crossings on opposite hemispheres were studied. The dual bow shock crossings were then compared to a bow shock model, and the difference in the distance to the model was used as a measure of asymmetry.

Results. With the single-spacecraft method, an asymmetry with respect to the solar wind convective electric field, Esw, was found, wherein the bow shock was farther from the planet in the ZMSE <0 hemisphere, that is, the - E hemisphere. With the dual-spacecraft method, the mean of the magnitude of the asymmetries in the individual case was 0.13 RM. However, the standard deviation was as high as the mean, and no significant asymmetry could be attributed either to the solar wind convective electric field or to the Martian crustal fields. A strong asymmetry without a clear correlation to these factors was found nonetheless. Possible causes of the measured asymmetry are discussed.

Conclusions. The magnitude of the asymmetries in individual observations is larger than the average asymmetries. This indicates that the shape of the Martian bow shock is dynamic and influenced by fluctuations or wave phenomena.

Place, publisher, year, edition, pages
EDP Sciences, 2025
Keywords
Planets and satellites: dynamical evolution and stability, Planets and satellites: general, Planets and satellites: magnetic fields, Plasmas, Shock waves
National Category
Fusion, Plasma and Space Physics Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:umu:diva-235376 (URN)10.1051/0004-6361/202450449 (DOI)001411854100010 ()2-s2.0-85217019662 (Scopus ID)
Funder
Swedish National Space Board, 2023-00208Swedish National Space Board, 194/19
Available from: 2025-02-21 Created: 2025-02-21 Last updated: 2025-09-22Bibliographically approved
3. Jets downstream of the Martian bow shock: occurrence in the 2014–2024 period
Open this publication in new window or tab >>Jets downstream of the Martian bow shock: occurrence in the 2014–2024 period
Show others...
2025 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 696, article id A75Article in journal (Refereed) Published
Abstract [en]

Context. Dynamic pressure enhancements, known as magnetosheath jets, are plasma structures with a higher dynamic pressure than the surrounding plasma. They have been thoroughly studied at Earth and recently discovered around other planetary bodies. However, studies on jets outside of the terrestrial magnetosheath have only been performed as case studies.

Aims. We present the first statistical study of jets in the Martian plasma environment. Methods. Our database was assembled using ten years of Mars Atmosphere and Volatile Evolution (MAVEN) mission data sampling various regions in the Martian plasma environment.

Results. Our database contains 82 645 jets, which have an average dynamic pressure increase of a factor of 2.34. The majority of jets are observed close to the bow shock in the magnetosheath. Most jets are driven by a combination of velocity and density enhancement, although the distribution is skewed toward density enhancement, as compared to jets at Earth. The jets are often colder than their background. The median scale size of Martian jets is 0.67 RM.

Conclusions. Jets in the Martian plasma environment are similar to jets observed in the terrestrial magnetosheath, however, there are some differences. In Martian jets, the density enhancement dominates over the velocity; whereas in terrestrial jets, the velocity enhancement dominates over the density enhancement. Furthermore, jets are more deflected compared to the surrounding magnetosheath plasma. Martian jets are likely to be smaller than terrestrial jets, but they are larger relative to the scale size of the magnetosphere.

Place, publisher, year, edition, pages
EDP Sciences, 2025
Keywords
methods: data analysis, planets, plasmas, satellites: individual: Mars
National Category
Astronomy, Astrophysics and Cosmology Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:umu:diva-240294 (URN)10.1051/0004-6361/202453557 (DOI)001459780300024 ()2-s2.0-105007545910 (Scopus ID)
Funder
Swedish National Space Board, 2023-00208
Available from: 2025-06-25 Created: 2025-06-25 Last updated: 2025-09-22Bibliographically approved
4. Solar wind interaction with the Martian magnetosphere during radial IMF
Open this publication in new window or tab >>Solar wind interaction with the Martian magnetosphere during radial IMF
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
urn:nbn:se:umu:diva-244320 (URN)
Available from: 2025-09-19 Created: 2025-09-19 Last updated: 2025-09-22Bibliographically approved
5. M5 — Mars magnetospheric multipoint measurement mission: a multi-spacecraft plasma physics mission to Mars
Open this publication in new window or tab >>M5 — Mars magnetospheric multipoint measurement mission: a multi-spacecraft plasma physics mission to Mars
Show others...
2024 (English)In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 73, no 6, p. 3235-3255Article in journal (Refereed) Published
Abstract [en]

Mars, lacking an intrinsic dynamo, is an ideal laboratory to comparatively study induced magnetospheres, which can be found in other terrestrial bodies as well as comets. Additionally, Mars is of particular interest to further exploration due to its loss of habitability by atmospheric escape and possible future human exploration. In this context, we propose the Mars Magnetospheric Multipoint Measurement Mission (M5), a multi-spacecraft mission to study the dynamics and energy transport of the Martian induced magnetosphere comprehensively. Particular focus is dedicated to the largely unexplored magnetotail region, where signatures of magnetic reconnection have been found. Furthermore, a reliable knowledge of the upstream solar wind conditions is needed to study the dynamics of the Martian magnetosphere, especially the different dayside boundary regions but also for energy transport phenomena like the current system and plasma waves. This will aid the study of atmospheric escape processes of planets with induced magnetospheres. In order to resolve the three-dimensional structures varying both in time and space, multi-point measurements are required. Thus, M5 is a five spacecraft mission, with one solar wind monitor orbiting Mars in a circular orbit at 5 Martian radii, and four smaller spacecraft in a tetrahedral configuration orbiting Mars in an elliptical orbit, spanning the far magnetotail up to 6 Mars radii with a periapsis just outside the Martian magnetosphere of 1.8 Mars radii. We not only present a detailed assessment of the scientific need for such a mission but also show the resulting mission and spacecraft design taking into account all aspects of the mission requirements and constraints such as mass, power, and link budgets. Additionally, different aspects of the mission programmatics like a possible mission timeline, cost estimates, or public outreach are shown. The common requirements for acceptance for an ESA mission are considered. The mission outlined in this paper was developed during the Alpbach Summer School 2022 on the topic of “Comparative Plasma Physics in the Universe”.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Atmospheric escape, Induced magnetospheres, Magnetic reconnection, Mars, Mission concept proposal, Multi-spacecraft constellation
National Category
Fusion, Plasma and Space Physics Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:umu:diva-220467 (URN)10.1016/j.asr.2023.11.032 (DOI)2-s2.0-85183542803 (Scopus ID)
Funder
The European Space Agency (ESA)Swedish National Space Board
Available from: 2024-02-16 Created: 2024-02-16 Last updated: 2025-09-19Bibliographically approved

Open Access in DiVA

fulltext(15841 kB)138 downloads
File information
File name FULLTEXT01.pdfFile size 15841 kBChecksum SHA-512
cf2048300b42e4b15fd9da8ad403ec2ffa2eed30dcc7c2f97ea538386c18091140ae55edd2b955760da49cb6b0d1093852bfcbb6c5b2631fdbc28339e44163fc
Type fulltextMimetype application/pdf
spikblad(219 kB)30 downloads
File information
File name SPIKBLAD02.pdfFile size 219 kBChecksum SHA-512
0c9549aaa71a010e67120166e83201ec9c949f104f62ac454be8e4353b514a4cc984c04b2def2e410e2a2de53418aa6ce163018d193a4b686718f194e4e912bf
Type spikbladMimetype application/pdf

Authority records

Nesbit-Östman, Sara

Search in DiVA

By author/editor
Nesbit-Östman, Sara
By organisation
Department of Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 138 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1627 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf