Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Transplantation of mesenchymal stem cells and injections of microRNA as therapeutics for nervous system repair
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi. Department of Surgical and Perioperative Sciences, Faculty of Medicine.
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Traumatic injuries to the spinal cord (SCI) and peripheral nerve (PNI) affect several thousand people worldwide every year. At present, there is no effective treatment for SCI and despite continuous improvements in microsurgical reconstructive techniques for PNI, many patients are still left with permanent, devastating neurological dysfunction. This thesis investigates the effects of mesenchymal stem cells (MSC) derived from adipose (ASC) and dental (DSC) tissue and chitosan/microRNA-124 polyplex particles on regeneration after spinal cord and peripheral nerve injury in adult rats. Dental stem cells were obtained from apical papilla, dental pulp, and periodontal ligament. ASC and DSC expressed MSC surface markers (CD73, CD90, CD105 and CD146) and various neurotrophic molecules including BDNF, GDNF, NGF, VEGF-A and angiopoietin-1. Growth factor stimulation of the stem cells resulted in increased secretion of these proteins. Both ASC and DSC supported in vitro neurite outgrowth and in contrast to Schwann cells, ASC did not induce activation of astrocytes. Stimulated ASC also showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. In a peripheral nerve injury model, ASC and DSC were seeded into a fibrin conduit, which was used to bridge a 10 mm rat sciatic nerve gap. After 2 weeks, both ASC and DSC promoted axonal regeneration in the conduit and reduced caspase-3 expression in the dorsal root ganglion (DRG). ASC also enhanced GAP-43 and ATF-3 expression in the spinal cord, reduced c-jun expression in the DRG and increased the vascularity of the implant. After transplantation into injured C3-C4 cervical spinal cord, ASC continued to express neurotrophic factors and laminin and stimulated extensive ingrowth of 5HT-positive raphaespinal axons into the trauma zone. In addition, ASC induced sprouting of raphaespinal terminals in C2 contralateral ventral horn and C6 ventral horn on both sides. Transplanted cells also changed the structure and the density of the astroglial scar. Although the transplanted cells had no effect on the density of capillaries around the lesion site, the reactivity of OX42-positive microglial cells was markedly reduced. However, ASC did not enhance recovery of forelimb function. In order to reduce activation of microglia/macrophages and the secondary tissue damage after SCI, the role of microRNA-124 was investigated. In vitro transfection of chitosan/microRNA-124 polyplex particles into rat microglia resulted in the reduction of reactive oxygen species and TNF-α levels and lowered expression of MHC-II. Upon microinjection into uninjured rat spinal cords, particles formed with Cy3-labeled control sequence RNA, were specifically internalized by OX42 positive macrophages and microglia. Alternatively, particles injected in the peritoneum were transported by macrophages to the site of spinal cord injury. Microinjections of chitosan/microRNA-124 particles significantly reduced the number of ED-1 positive macrophages after SCI. In summary, these results show that human MSC produce functional neurotrophic and angiogenic factors, creating a more desirable microenvironment for neural regeneration after spinal cord and peripheral nerve injury. The data also suggests that chitosan/microRNA-124 particles could be potential treatment technique to reduce neuroinflammation.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University , 2016. , s. 97
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1802
Nyckelord [en]
spinal cord injury, peripheral nerve injury, mesenchymal stem cells, regeneration, neurotrophic factor, angiogenic factor
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
URN: urn:nbn:se:umu:diva-119437ISBN: 978-91-7601-465-3 (tryckt)OAI: oai:DiVA.org:umu-119437DiVA, id: diva2:920912
Disputation
2016-05-13, N360, Naturvetarhuset, Umeå universitet, Umeå, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2014-2306EU, Europeiska forskningsrådetTillgänglig från: 2016-04-22 Skapad: 2016-04-19 Senast uppdaterad: 2018-06-07Bibliografiskt granskad
Delarbeten
1. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair
Öppna denna publikation i ny flik eller fönster >>Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair
Visa övriga...
2014 (Engelska)Ingår i: Stem Cells and Development, ISSN 1547-3287, E-ISSN 1557-8534, Vol. 23, nr 7, s. 741-754Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In future, adipose-derived stem cells (ASC) might be used to treat neurological disorders. In this study, the neurotrophic and angiogenic properties of human ASC were evaluated, and their effects in a peripheral nerve injury model were determined. In vitro growth factor stimulation of the cells resulted in increased secretion of brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor-A (VEGF-A), and angiopoietin-1 proteins. Conditioned medium from stimulated cells increased neurite outgrowth of dorsal root ganglia (DRG) neurons. Similarly, stimulated cells showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. ASC were seeded into a fibrin conduit that was used to bridge a 10 mm rat nerve gap. After 2 weeks, the animals treated with control or stimulated ASC showed an enhanced axon regeneration distance. Stimulated cells evoked more total axon growth. Analysis of regeneration and apoptosis-related gene expression showed that both ASC and stimulated ASC enhanced GAP-43 and activating transcription factor 3 (ATF-3) expression in the spinal cord and reduced c-jun expression in the DRG. Caspase-3 expression in the DRG was reduced by stimulated ASC. Both ASC and stimulated ASC also increased the vascularity of the fibrin nerve conduits. Thus, ASC produce functional neurotrophic and angiogenic factors, creating a more desirable microenvironment for nerve regeneration.

Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:umu:diva-83708 (URN)10.1089/scd.2013.0396 (DOI)000333613700007 ()24124760 (PubMedID)2-s2.0-84897396881 (Scopus ID)
Tillgänglig från: 2013-12-05 Skapad: 2013-12-05 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
2. The neurotrophic effects of different human dental mesenchymal stem cells
Öppna denna publikation i ny flik eller fönster >>The neurotrophic effects of different human dental mesenchymal stem cells
Visa övriga...
2017 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 7, artikel-id 12605Artikel i tidskrift (Refereegranskat) Published
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:umu:diva-119481 (URN)10.1038/s41598-017-12969-1 (DOI)000412138800041 ()28974767 (PubMedID)2-s2.0-85030552068 (Scopus ID)
Tillgänglig från: 2016-04-20 Skapad: 2016-04-20 Senast uppdaterad: 2024-07-02Bibliografiskt granskad
3. The therapeutic effects of human adipose derived stem cells in a rat cervical spinal cord injury model
Öppna denna publikation i ny flik eller fönster >>The therapeutic effects of human adipose derived stem cells in a rat cervical spinal cord injury model
Visa övriga...
2014 (Engelska)Ingår i: Stem Cells and Development, ISSN 1547-3287, E-ISSN 1557-8534, Vol. 23, nr 14, s. 1659-1674Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Spinal cord injury triggers a cascade of degenerative changes leading to cell death and cavitation. Severed axons fail to regenerate across the scar tissue and are only capable of limited sprouting. In this study we investigated the effects of adult human adipose derived stem cells (ASC) on axonal regeneration following transplantation into the injured rat cervical spinal cord. ASC did not induce activation of astrocytes in culture and supported neurite outgrowth from adult rat sensory DRG neurons. After transplantation into the lateral funiculus 1mm rostral and caudal to the cervical C3-C4 hemisection, ASC continued to express BDNF, VEGF and FGF-2 for 3 weeks but only in animals treated with cyclosporine A. Transplanted ASC stimulated extensive ingrowth of 5HT-positive raphaespinal axons into the trauma zone with some terminal arborisations reaching the caudal spinal cord. In addition, ASC induced sprouting of raphaespinal terminals in C2 contralateral ventral horn and C6 ventral horn on both sides. Transplanted cells also changed the structure of the lesion scar with numerous astrocytic processes extended into the middle of the trauma zone in a chain-like pattern and in close association with regenerating axons. The density of the astrocytic network was also significantly decreased. Although the transplanted cells had no effect on the density of capillaries around the lesion site, the activity of OX42-positive microglial cells was markedly reduced. However, ASC did not support recovery of forelimb function. The results suggest that transplanted ASC can modify the structure of the glial scar and stimulate axonal sprouting.

Ort, förlag, år, upplaga, sidor
Mary Ann Liebert, 2014
Nationell ämneskategori
Neurovetenskaper Cell- och molekylärbiologi Hematologi
Identifikatorer
urn:nbn:se:umu:diva-88637 (URN)10.1089/scd.2013.0416 (DOI)000339315000009 ()24803143 (PubMedID)2-s2.0-84904117287 (Scopus ID)
Anmärkning

Included in thesis in manuscript form.

Tillgänglig från: 2014-05-12 Skapad: 2014-05-12 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
4. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury
Öppna denna publikation i ny flik eller fönster >>Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury
Visa övriga...
2016 (Engelska)Ingår i: Nanomedicine: Nanotechnology, Biology and Medicine, ISSN 1549-9634, E-ISSN 1549-9642, Vol. 12, nr 3, s. 643-653Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Traumatic injury to the central nervous system (CNS) is further complicated by an increase in secondary neuronal damage imposed by activated microglia/macrophages. MicroRNA-124 (miR-124) is responsible for mouse monocyte quiescence and reduction of their inflammatory cytokine production. We describe the formulation and ex vivo transfection of chitosan/miR-124 polyplex particles into rat microglia and the resulting reduction of reactive oxygen species (ROS) and TNF-α and lower expression of MHC-II. Upon microinjection into uninjured rat spinal cords, particles formed with Cy3-labeled control sequence RNA, were specifically internalized by OX42 positive macrophages and microglia cells. Alternatively particles injected in the peritoneum were transported by macrophages to the site of spinal cord injury 72h post injection. Microinjections of chitosan/miR-124 particles significantly reduced the number of ED-1 positive macrophages in the injured spinal cord. Taken together, these data present a potential treatment technique to reduce inflammation for a multitude of CNS neurodegenerative conditions.

Nationell ämneskategori
Medicinska och farmaceutiska grundvetenskaper Nanoteknik
Forskningsämne
anatomi
Identifikatorer
urn:nbn:se:umu:diva-117111 (URN)10.1016/j.nano.2015.10.011 (DOI)000373924000007 ()26582736 (PubMedID)2-s2.0-84959387042 (Scopus ID)
Anmärkning

2016-05-16: Originally published in manuscript form.

Tillgänglig från: 2016-02-22 Skapad: 2016-02-22 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

fulltext(692 kB)392 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 692 kBChecksumma SHA-512
cb7cb65c074fe4afd49c2dec7ff367b5cd34817d6bf7d8dec8c4b29603264ee8afe22a1d37dc5c6b2960a81512ed11765234ab9decb3df43cbf7a46687336430
Typ fulltextMimetyp application/pdf
spikblad(37 kB)82 nedladdningar
Filinformation
Filnamn SPIKBLAD01.pdfFilstorlek 37 kBChecksumma SHA-512
bb5af1a165de36d8e41dc4d9757c55fc8ade3b445d7625fc5fd2feb5f26a5fabe5462a3bfec030a43c34d1d374d8719aaf4c79192e7ee0bcea86ff4f33b0937d
Typ spikbladMimetyp application/pdf

Person

Kolar, Mallappa K.

Sök vidare i DiVA

Av författaren/redaktören
Kolar, Mallappa K.
Av organisationen
AnatomiHandkirurgi
Neurovetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 393 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 853 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf