Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Morphological and Molecular Characterization of the Spinal Cord after Ventral Root Avulsion or Distal Peripheral Nerve Axotomy Injuries in Adult Rats
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi. (laboratoriet för nervreparation och cellterapi)
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
2017 (Engelska)Ingår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 34, nr 3, s. 652-660Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Retrograde cell death in sensory dorsal root ganglion cells following peripheral nerve injury is well established. However, available data regarding the underlying mechanism behind injury induced motoneuron death are conflicting. By comparing morphological and molecular changes in spinal motoneurons after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA) 7 and 14 days postoperatively, we aimed to gain more insight about the mechanism behind injury-induced motoneuron degeneration. Morphological changes in spinal cord were assessed by using quantitative immunohistochemistry. Neuronal degeneration was revealed by decreased immunostaining for microtubuleassociated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Significant motoneuron atrophy was already observed at 7 days post-injury, independently of injury type. Immunostaining for ED1 reactive microglia was significantly elevated in all experimental groups, as well as the astroglial marker glial fibrillary acidic protein (GFAP). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of genes involved in programmed cell death including caspase-3, caspase-8, and related death receptors TRAIL-R, tumor necrosis factor (TNF)-R, and Fas following VRA. In contrast, following PNA, caspase-3 and the death receptor gene expression levels did not differ from the control, and there was only a modest increased expression of caspase-8. Moreover, the altered gene expression correlated with protein changes. These results show that the spinal motoneurons reacted in a similar fashion with respect to morphological changes after both proximal and distal injury. However, the increased expression of caspase-3, caspase-8, and related death receptors after VRA suggest that injury- induced motoneuron degeneration is mediated through an apoptotic mechanism, which might involve both the intrinsic and the extrinsic pathways.

Ort, förlag, år, upplaga, sidor
Mary Ann Liebert, 2017. Vol. 34, nr 3, s. 652-660
Nyckelord [en]
apoptosis, motoneurons, PNA, VRA
Nationell ämneskategori
Kirurgi Neurovetenskaper Neurologi
Identifikatorer
URN: urn:nbn:se:umu:diva-127355DOI: 10.1089/neu.2015.4378ISI: 000392815600013PubMedID: 27297543Scopus ID: 2-s2.0-85010720933OAI: oai:DiVA.org:umu-127355DiVA, id: diva2:1045414
Anmärkning

Online Ahead of Print: July 8, 2016

Tillgänglig från: 2016-11-09 Skapad: 2016-11-09 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. An exploration of the mechanisms behind peripheral nerve injury
Öppna denna publikation i ny flik eller fönster >>An exploration of the mechanisms behind peripheral nerve injury
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Despite surgical innovation, the sensory and motor outcome after peripheral nerve injury is incomplete. In this thesis, the biological pathways potentially responsible for the poor functional recoveries were investigated in both the distal nerve stump/target organ, spinal motoneurons and dorsal root ganglia (DRG). The effect of delayed nerve repair was determined in a rat sciatic nerve transection model. There was a dramatic decline in the number of regenerating motoneurons and myelinated axons found in the distal nerve stumps of animals undergoing nerve repair after a delay of 3 and 6 months. RT-PCR of the distal nerve stumps showed a decline in expression of Schwann cells (SC) markers, with a progressive increase in fibrotic and proteoglycan scar markers, with increased delayed repair time. Furthermore, the yield of SC which could be isolated from the distal nerve segments progressively fell with increased delay in repair time. Consistent with the impaired distal nerve stumps the target medial gastrocnemius (MG) muscles at 3- and 6-months delayed repair were atrophied with significant declines in wet weights (61% and 27% compared with contralateral sides). The role of myogenic transcription factors, muscle specific microRNAs and musclespecific E3 ubiquitin ligases in the muscle atrophy was investigated in both gastrocnemius and soleus muscles following either crush or nerve transection injury. In the crush injury model, the soleus muscle showed significantly increased recovery in wet weight at days 14 and 28 (compared with day 7) which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. Morphological and molecular changes in spinal motoneurons were compared after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA). Neuronal degeneration was indicated by decreased immunostaining for microtubule-associated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Immunostaining for ED1-reactive microglia and GFAPpositive astrocytes was significantly elevated in all experimental groups. qRT-PCR analysis and Western blotting of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of apoptotic cell death mediators including caspases-3 and -8 and a range of related death receptors following VRA. In contrast, following PNA, only caspase-8 was moderately upregulated. The mechanisms of primary sensory neuron degeneration were also investigated in the DRG following peripheral nerve axotomy, where several apoptotic pathways including those involving the endoplasmic reticulum were shown to be upregulated. In summary, these results show that the critical time point after which the outcome of regeneration becomes too poor appears to be 3-months. Both proximal and distal injury affect spinal motoneurons morphologically, but VRA induces motoneuron degeneration mediated through both intrinsic and extrinsic apoptotic pathways. Primary sensory neuron degeneration involves several different apoptotic pathways, including the endoplasmic reticulum.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2016. s. 53
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1853
Nyckelord
Peripheral nerve injury, target organ, spinal motoneurons, primary sensory neurons, degeneration
Nationell ämneskategori
Cell- och molekylärbiologi
Forskningsämne
anatomi
Identifikatorer
urn:nbn:se:umu:diva-127357 (URN)978-91-7601-591-9 (ISBN)
Disputation
2016-12-02, Sal KB3A9, KBC-huset, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-11-11 Skapad: 2016-11-09 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Wiberg, RebeccaKingham, Paul JNovikova, Liudmila

Sök vidare i DiVA

Av författaren/redaktören
Wiberg, RebeccaKingham, Paul JNovikova, Liudmila
Av organisationen
AnatomiHandkirurgi
I samma tidskrift
Journal of Neurotrauma
KirurgiNeurovetenskaperNeurologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 432 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf