We study random subcube intersection graphs, that is, graphs obtained by selecting a random collection of subcubes of a fixed hypercube Qd to serve as the vertices of the graph, and setting an edge between a pair of subcubes if their intersection is non-empty. Our motivation for considering such graphs is to model 'random compatibility' between vertices in a large network. For both of the models considered in this paper, we determine the thresholds for covering the underlying hypercube Qd and for the appearance of s-cliques. In addition we pose a number of open problems.