Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 11, nr 1, artikel-id e0147670Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER) was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of infection were employed. A predictive model of bacteremic sepsis with 107 metabolites was developed and validated. The number of metabolites was reduced stepwise until identifying a set of 6 predictive metabolites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95% CI 0.69-0.99) and a specificity 0.84 (95% CI 0.58-0.94) with an AUC of 0.93 (95% CI 0.89-1.01). Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95% CI 0.85-1.00) and specificity of 0.95 (95% CI 0.74-0.99), and performed better than various combinations of conventional laboratory and clinical parameters. We found that a metabolomics approach for analysis of acute blood samples was useful for identification of patients with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infection diagnostics.

Ort, förlag, år, upplaga, sidor
2016. Vol. 11, nr 1, artikel-id e0147670
Nationell ämneskategori
Farmaceutiska vetenskaper Anestesi och intensivvård
Identifikatorer
URN: urn:nbn:se:umu:diva-130006DOI: 10.1371/journal.pone.0147670ISI: 000368655300138PubMedID: 26800189Scopus ID: 2-s2.0-84958230951OAI: oai:DiVA.org:umu-130006DiVA, id: diva2:1063920
Tillgänglig från: 2017-01-11 Skapad: 2017-01-11 Senast uppdaterad: 2024-07-02Bibliografiskt granskad
Ingår i avhandling
1. Improved diagnosis and prediction of community-acquired pneumonia
Öppna denna publikation i ny flik eller fönster >>Improved diagnosis and prediction of community-acquired pneumonia
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Förbättrad diagnostik och prediktion vid samhällsförvärvad pneumoni
Abstract [en]

Community-acquired pneumonia (CAP) is a major cause of morbidity and mortality worldwide. Although there is wide variation in the microbial etiology, CAP may manifest with similar symptoms, making institution of proper treatment challenging. Therefore, etiological diagnosis is important to ensure that correct treatment and necessary infection control measures are instituted. This provides a challenge for conventional microbial diagnostic methods, typically based on culture and direct antigen tests. Moreover, existing molecular biomarkers have poor prognostic value. Few studies have investigated the global metabolic response during infection and virtually nothing is known about early responses after the start of antimicrobial treatment. The aim of this work was to improve diagnostic and predictive methods for CAP.

In paper I, a qPCR panel targeting 15 pathogens known to cause CAP was developed and evaluated. It combined identification of bacterial pathogens and viruses in the same diagnostic platform. The method proved to be robust and the results consistent with those obtained by standard methods. The panel approach, compared to conventional, selective diagnostics, detected a larger number of pathogens. In Paper II, whole blood samples from 65 patients with bacteremic sepsis were analyzed for metabolite profiles. Forty-nine patients with symptoms of sepsis, but later attributed to other diagnoses, were matched according to age and sex and served as a control group. Six metabolites were identified, all of which predicted growth of bacteria in blood culture. One of the metabolites, myristic acid, alone predicted bacteremic sepsis with a sensitivity of 100% and a specificity of 95%. Paper III and IV were based on a clinical study enrolling 35 patients with suspected CAP in need of hospital care. The aim was to study the metabolic response during the early phase of acute infection. The qPCR panel developed in Paper I was used to obtain the microbial etiological diagnosis. Paper IV focused on the global metabolic response and highlighted the dynamics of changes in major metabolic pathways during early recovery. A specific metabolite pattern for M. pneumoniae etiology was found. Four metabolites accurately predicted all but one patient as either M. pneumoniae etiology or not. Paper III looked at phospholipid levels during the first 48 hours after hospital admission. It was found that all major phospholipid species, especially the lysophosphatidyl-cholines, were pronouncedly decreased during acute infection. Levels started to increase the day after admission, reaching statistical significance at 48 hours. Paper II-IV showed that metabolomics might be used to study a number of different aspects of infection, such as etiology, disease progress and recovery. Knowledge of the metabolic profiles of patients may not only be utilized for biomarker discovery, as proposed in this work, but also for the future development of targeted therapies and supportive treatment.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2018. s. 80
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1960
Nyckelord
Community-acquired pneumonia, infection, diagnosis, qPCR, metabolites, metabolomics
Nationell ämneskategori
Infektionsmedicin
Identifikatorer
urn:nbn:se:umu:diva-147064 (URN)978-91-7601-873-6 (ISBN)
Disputation
2018-05-25, Bergasalen (Q0), Norrlands universitetssjukhus, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-05-04 Skapad: 2018-04-25 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

fulltext(1085 kB)334 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1085 kBChecksumma SHA-512
1fea0767a4bcb51f4a34c14fe8acaa313a1efbf1a77f91bd17d12c1528692a13cfeaea72dba7b4baf28edd5031964e09a491ddb119742b96eed08831b17ed36a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Kauppi, Anna M.Edin, AliciaSjöstedt, AndersGylfe, ÅsaJohansson, Anders

Sök vidare i DiVA

Av författaren/redaktören
Kauppi, Anna M.Edin, AliciaSjöstedt, AndersGylfe, ÅsaJohansson, Anders
Av organisationen
Klinisk bakteriologiMolekylär Infektionsmedicin, Sverige (MIMS)Umeå Centre for Microbial Research (UCMR)
I samma tidskrift
PLOS ONE
Farmaceutiska vetenskaperAnestesi och intensivvård

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 334 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 882 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf