Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0002-0455-8904
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 7, artikel-id 4041Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2017. Vol. 7, artikel-id 4041
Nationell ämneskategori
Radiologi och bildbehandling
Identifikatorer
URN: urn:nbn:se:umu:diva-134993DOI: 10.1038/s41598-017-04151-4ISI: 000403874900024PubMedID: 28642480Scopus ID: 2-s2.0-85021181472OAI: oai:DiVA.org:umu-134993DiVA, id: diva2:1095678
Anmärkning

Originally included in thesis in manuscript form.

Tillgänglig från: 2017-05-15 Skapad: 2017-05-15 Senast uppdaterad: 2023-03-23Bibliografiskt granskad
Ingår i avhandling
1. Applications of statistical methods in quantitative magnetic resonance imaging
Öppna denna publikation i ny flik eller fönster >>Applications of statistical methods in quantitative magnetic resonance imaging
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Magnetic resonance imaging, MRI, offers a vast range of imaging methods that can be employed in the characterization of tumors. MRI is generally used in a qualitative way, where radiologists interpret the images for e.g. diagnosis, follow ups, or assessment of treatment response. In the past decade, there has been an increasing interest for quantitative imaging, which give repeatable measurements of the anatomy. Quantitative imaging allows for objective analysis of the images, which are grounded in physical properties of the underlying tissues. The aim of this thesis was to improve quantitative measurements of Dynamic contrast enhanced MRI (DCE-MRI), and the texture analysis of diffusion weighted MRI (DW-MRI).

DCE-MRI measures perfusion, which is the delivery of blood, oxygen and nutrients to the tissues. The exam involves continuously imaging the region of interest, e.g. a tumor, while injecting a contrast agent (CA) in the blood stream. By analyzing how fast and how much CA leaks out into the tissues, the cell density and the permeability of the capillaries can be estimated. Tumors often have an irregular and broken vasculature, and DCE-MRI can aid in tumor grading or treatment assessment. One step is crucial when performing DCE-MRI analysis, the quantification of CA in the tissue. The CA concentration is difficult to measure accurately due to uncertainties in the imaging, properties of the CA, and physiology of the patient. Paper I, the possibility of using two aspects of the MRI data, phase and magnitude, for improved CA quantification, is explored. We found that the combination of phase and magnitude information improved the CA quantification in regions with high CA concentration, and was more advantageous for high field strength scanners.

DW-MRI measures the diffusion of water in and between cells, which reflects the cell density and structure of the tissue. The structure of a tumor can give insights into the prognosis of the disease. Tumors are heterogeneous, both genetically and in the distribution of cells, and tumors with high intratumoral heterogeneity have poorer prognosis. This heterogeneity can be measured using texture analysis. In 1973, Haralick et al. presented a texture analysis method using a gray level co-occurrence matrix, GLCM, to gauge the spatial distribution of gray levels in the image. This method of assessing texture in images has been successfully applied in many areas of research, from satellite images to medical applications. Texture analysis in treatment outcome assessment is studied in Paper II, where we showed that texture can distinguish between groups of patients with different survival times, in images acquired prior to treatment start.

However, this type of texture analysis is not inherently quantitative in the way it is calculated today. This was studied in Paper III, where we investigated how texture features were affected by five parameters related to image acquisition and pre-processing. We found that the texture feature values were dependent on the choice of these imaging and preprocessing parameters. In Paper IV, a novel method for calculating Haralick texture features was presented, which makes the texture features asymptotically invariant to the size of the GLCM. This method allows for comparison of textures between images that have been analyzed in different ways.

In conclusion, the work in this thesis has been aimed at improving quantitative analysis of tumors using MRI and texture analysis.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2017. s. 65
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1900
Nyckelord
Quantitative imaging, tumor imaging, dynamic contrast-enhanced MRI, diffusion weighted MRI, texture analysis
Nationell ämneskategori
Radiologi och bildbehandling
Forskningsämne
radiofysik
Identifikatorer
urn:nbn:se:umu:diva-134997 (URN)978-91-7601-729-6 (ISBN)
Disputation
2017-06-09, Bergasalen, byggnad 27, Norrlands universitetssjukhus, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-05-19 Skapad: 2017-05-15 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

fulltext(4518 kB)778 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4518 kBChecksumma SHA-512
b996c62f18789187d46361229136c3d575e4bf27203c375d9d37e981da1995cdd97e1ec07c353906f047466c2e0528fee2d8fd2404fb9d74c6b3064658ae7178
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Brynolfsson, PatrikNilsson, DavidTorheim, TuridAsklund, ThomasThellenberg Karlsson, CamillaTrygg, JohanNyholm, TufveGarpebring, Anders

Sök vidare i DiVA

Av författaren/redaktören
Brynolfsson, PatrikNilsson, DavidTorheim, TuridAsklund, ThomasThellenberg Karlsson, CamillaTrygg, JohanNyholm, TufveGarpebring, Anders
Av organisationen
RadiofysikKemiska institutionenOnkologiInstitutionen för strålningsvetenskaper
I samma tidskrift
Scientific Reports
Radiologi och bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 778 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 968 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf