Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification and characterization of neutrophil extracellular trap shapes in flow cytometry
Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Immunologi/immunkemi.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Medical Imaging 2017: Digital Pathology / [ed] Gurcan, MN Tomaszewski, JE, 2017, artikel-id 101400DKonferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Neutrophil extracellular trap (NET) formation is an alternate immunologic weapon used mainly by neutrophils. Chromatin backbones fused with proteins derived from granules are shot like projectiles onto foreign invaders. It is thought that this mechanism is highly anti-microbial, aids in preventing bacterial dissemination, is used to break down structures several sizes larger than neutrophils themselves, and may have several more uses yet unknown. NETs have been implied to be involved in a wide array of systemic host immune defenses, including sepsis, autoimmune diseases, and cancer. Existing methods used to visually quantify NETotic versus non-NETotic shapes are extremely time-consuming and subject to user bias. These limitations are obstacles to developing NETs as prognostic biomarkers and therapeutic targets. We propose an automated pipeline for quantitatively detecting neutrophil and NET shapes captured using a flow cytometry-imaging system. Our method uses contrast limited adaptive histogram equalization to improve signal intensity in dimly illuminated NETs. From the contrast improved image, fixed value thresholding is applied to convert the image to binary. Feature extraction is performed on the resulting binary image, by calculating region properties of the resulting foreground structures. Classification of the resulting features is performed using Support Vector Machine. Our method classifies NETs from neutrophils without traps at 0.97/0.96 sensitivity/specificity on n = 387 images, and is 1500X faster than manual classification, per sample. Our method can be extended to rapidly analyze whole-slide immunofluorescence tissue images for NET classification, and has potential to streamline the quantification of NETs for patients with diseases associated with cancer and autoimmunity.

Ort, förlag, år, upplaga, sidor
2017. artikel-id 101400D
Serie
Proceedings of SPIE, ISSN 0277-786X ; 10140
Nyckelord [en]
Neutrophil extracellular trap, support vector machine, flow cytometry, image analysis
Nationell ämneskategori
Medicinsk bildbehandling
Identifikatorer
URN: urn:nbn:se:umu:diva-138058DOI: 10.1117/12.2254680ISI: 000404880200012Scopus ID: 2-s2.0-85020297205ISBN: 978-1-5106-0725-5 (tryckt)ISBN: 978-1-5106-0726-2 (digital)OAI: oai:DiVA.org:umu-138058DiVA, id: diva2:1129426
Konferens
5th Digital Pathology Conference, FEB 12-13, 2017, Orlando, FL
Tillgänglig från: 2017-08-03 Skapad: 2017-08-03 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Urban, Constantin

Sök vidare i DiVA

Av författaren/redaktören
Urban, Constantin
Av organisationen
Immunologi/immunkemi
Medicinsk bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 702 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf