Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sparse Coding of Cardiac Signals for Automated Component Selection after Blind Source Separation
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: / [ed] Murray, A, IEEE, 2016, s. 785-788Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Wearable sensor technology like textile electrodes provides novel ambulatory health monitoring solutions but most often goes along with low signal quality. Blind Source Separation (BSS) is capable of extracting the Electrocardiogram (ECG) out of heavily distorted multichannel recordings. However, permutation indeterminacy has to be solved, i.e. the automated selection of the desired BSS output. To that end we propose to exploit the sparsity of the ECG modeled as a spike train of successive heartbeats. A binary code derived from a two-item dictionary {peak, no peak} and physiological a-priori information temporally represents every BSS output component. The (best) ECG component is automatically selected based on a modified Hamming distance comparing the components' code with the expected code behavior. Non-standard ECG recordings from ten healthy subjects performing common motions while wearing a sensor garment were subsequently processed in 10 s segments with spatio-temporal BSS. Our sparsity-based selection RCODE achieved 98.1% heart beat detection accuracy (ACC) by selecting a single component each after BSS. Traditional component selection based on higher-order statistics (e.g. skewness) achieved only 67.6% ACC.

Ort, förlag, år, upplaga, sidor
IEEE, 2016. s. 785-788
Serie
Computing in Cardiology Conference, ISSN 2325-8861 ; 43
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-138248DOI: 10.22489/CinC.2016.226-413ISI: 000405710400197Scopus ID: 2-s2.0-85016134657ISBN: 978-1-5090-0895-7 (digital)OAI: oai:DiVA.org:umu-138248DiVA, id: diva2:1134912
Konferens
43rd Computing in Cardiology Conference (CinC), SEP 11-14, 2016, Vancouver, CANADA
Tillgänglig från: 2017-08-21 Skapad: 2017-08-21 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusURL

Person

Wiklund, Urban

Sök vidare i DiVA

Av författaren/redaktören
Wiklund, Urban
Av organisationen
Radiofysik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 286 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf