Umeå universitets logga

umu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hydrogen and carbon separation by low-temperature slow pyrolysis of biomass: experimental validation
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Previous work have indicated that slow pyrolysis may be used to separate hydrogen and carbon in a biomass feedstock into different product fractions. The hydrogen predominantly ends up in the pyrolysis gas fraction, whereas the carbon is mainly retained in the char. A system concept was suggested using low-temperature slow pyrolysis to achieve; a) transportation fuel/chemical production from the volatilized fraction, and b) potential carbon negativity by sequestering the carbon from the biochar fraction after use for electricity and/or heat production. The present work aimed to identify important process parameters, validate the hydrogen and carbon separation potential, and identify a potential process optimum for spruce wood slow pyrolysis. The process temperature was shown as the most important factor influencing the hydrogen and carbon pyrolysis gas yields, whereas the residence time factor only showed significant influence on the product yields for the shorter residence times. All experiments demonstrated significant hydrogen and carbon separation to gas and char respectively, particularly for lower process temperatures. An optimum process operation temperature was not found but from an industrial perspective, the suggested preferable temperature interval lies within the lowtemperature pyrolysis range (350-400°C), just above high temperature torrefaction (~300°C).

Nyckelord [en]
biomass, pyrolysis, torrefaction, Norway spruce, syngas, hydrogen
Nationell ämneskategori
Kemiteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-139836OAI: oai:DiVA.org:umu-139836DiVA, id: diva2:1143785
Tillgänglig från: 2017-09-22 Skapad: 2017-09-22 Senast uppdaterad: 2025-02-18Bibliografiskt granskad
Ingår i avhandling
1. Biomass conversion through syngas-based biorefineries: thermochemical process integration opportunities
Öppna denna publikation i ny flik eller fönster >>Biomass conversion through syngas-based biorefineries: thermochemical process integration opportunities
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The replacement of fossil resources through renewable alternatives is one way to mitigate global climate change. Biomass is the only renewable source of carbon available for replacing oil as a refining feedstock. Therefore, it needs to be utilized not just as a fuel but for both biochemical and thermochemical conversion through biorefining. Optimizing and combining various conversion processes using a system perspective to maximize the valorization, biomass usage, and environmental benefits is of importance. This thesis work has evaluated the integration opportunities for various thermochemical conversion processes within a biorefinery system.

The aim for all evaluated concepts were syngas production through gasification or reforming. Two potential residue streams from an existing biorefinery were evaluated as gasification feedstocks, thereby combining biochemical and thermochemical conversion. Torrefaction as a biomass pretreatment for gasification end-use was evaluated based on improved feedstock characteristics, process benefits, and integration aspects. A system concept, “Bio2Fuels”, was suggested and evaluated for low-temperature slow pyrolysis as a way to achieve simultaneous biomass refinement and transport driven CO2 negativity.

Syngas was identified as a very suitable intermediate product for residue streams from biochemical conversion. Resulting syngas composition and quality showed hydrolysis residue as suitable gasification feedstock, providing some adjustments in the feedstock preparation. Gasification combined with torrefaction pretreatment demonstrated reduced syngas tar content. The co-gasification of biogas and wood in a FBG was successfully demonstrated with increased syngas H2/CO ratio compared to wood gasification, however high temperatures (≥1000°C) were required for efficient CH4 conversion. The demonstrated improved feedstock characteristics for torrefied biomass may facilitate gasification of biomass residue feedstocks in a biorefinery. Also, integration of a torrefaction unit on-site at the biorefinery or off-site with other industries could make use of excess low-value heat for the drying step with improved overall thermal efficiency. The Bio2Fuels concept provides a new application for slow pyrolysis. The experimental evaluation demonstrated significant hydrogen and carbon separation, and no significant volatilization of ash-forming elements (S and Cl excluded)  in low-temperature (<400°C) pyrolysis. The initial reforming test showed high syngas CH4 content, indicating the need for catalytic reforming.

The collective results from the present work indicate that the application of thermochemical conversion processes into a biorefinery system, making use of by-products from biochemical conversion and biomass residues as feedstocks, has significant potential for energy integration, increased product output, and climate change mitigation.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2017. s. 67
Nyckelord
Biomass, biorefinery, thermochemical conversion, torrefaction, slow pyrolysis, gasification, process integration, carbon negativity
Nationell ämneskategori
Kemiteknik
Identifikatorer
urn:nbn:se:umu:diva-139839 (URN)978-91-7601-427-1 (ISBN)
Disputation
2017-10-20, N430, Naturvetarhuset, Umeå, 13:00 (Svenska)
Opponent
Handledare
Tillgänglig från: 2017-09-29 Skapad: 2017-09-22 Senast uppdaterad: 2025-02-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Åberg, KatarinaBorén, EleonoraPommer, LindaNordin, Anders

Sök vidare i DiVA

Av författaren/redaktören
Åberg, KatarinaBorén, EleonoraPommer, LindaNordin, Anders
Av organisationen
Institutionen för tillämpad fysik och elektronik
Kemiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 578 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf