Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pilot scale experimental validation of the Bio2fuels low-temperature slow pyrolysis system concept
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

The “Bio2Fuels” concept previously suggested may potentially achieve a transport driven carbon negativity by use of a combination of; low-temperature slow pyrolysis/high-temperature torrefaction; gas reforming; fuel synthesis; coal replacement by the solid bio-coal stream; and CCS of the resulting flue gases. The initial pre-treatment process suggested may potentially exhibit several advantages and may well facilitate an appealing and cost-efficient conversion system. The present work was comprised of pilot-scale pyrolysis experiments on softwood pellets using a continuous auger screw torrefaction/pyrolysis reactor for validation of the process in the temperature range of 300-425°C. All products were analyzed for composition and the pyrolysis gas (permanent gases + bio-oil) was sampled for particulate matter, permanent gas and bio-oil composition. The volatilization propensity of ash-forming elements was analyzed based on alkali deposits on impactor plates with SEM analysis and ICP-AES analysis of the bio-oil. The volatilization of sulfur and chlorine was also evaluated via char retainment. In addition, an initial test run of thermal pyrolysis gas reforming was performed by operating the thermal oxidation burner in gasification/reforming mode. The results showed that the hydrogen and oxygen in the biomass feedstock were volatilized at lower temperatures than the feedstock carbon, with the desired resulting hydrogen/carbon separation into pyrolysis gas and biochar, but also enrichment of oxygen in the pyrolysis gas. The hydrogen pyrolysis gas yield was >75% for pyrolysis temperatures ≥375°C and the corresponding carbon gas yield ranged from 50% to 63%. Most of the hydrogen in the pyrolysis gas was bound in the bio-oil as water and various hydrocarbons. No significant volatilization of alkali elements was observed through either analysis method. The most abundant permanent gas formed was CO2 and with a CH4 concentration of about 9%vol. The thermal reforming experiments also demonstrated a high CH4 syngas concentration, strongly indicating the need for a catalytic reforming process.

Nyckelord [en]
biomass, CO2 negativity, slow pyrolysis, gas reforming, syngas, hydrogen, H2/CO ratio
Nationell ämneskategori
Kemiteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-139837OAI: oai:DiVA.org:umu-139837DiVA, id: diva2:1143787
Tillgänglig från: 2017-09-22 Skapad: 2017-09-22 Senast uppdaterad: 2025-02-18Bibliografiskt granskad
Ingår i avhandling
1. Biomass conversion through syngas-based biorefineries: thermochemical process integration opportunities
Öppna denna publikation i ny flik eller fönster >>Biomass conversion through syngas-based biorefineries: thermochemical process integration opportunities
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The replacement of fossil resources through renewable alternatives is one way to mitigate global climate change. Biomass is the only renewable source of carbon available for replacing oil as a refining feedstock. Therefore, it needs to be utilized not just as a fuel but for both biochemical and thermochemical conversion through biorefining. Optimizing and combining various conversion processes using a system perspective to maximize the valorization, biomass usage, and environmental benefits is of importance. This thesis work has evaluated the integration opportunities for various thermochemical conversion processes within a biorefinery system.

The aim for all evaluated concepts were syngas production through gasification or reforming. Two potential residue streams from an existing biorefinery were evaluated as gasification feedstocks, thereby combining biochemical and thermochemical conversion. Torrefaction as a biomass pretreatment for gasification end-use was evaluated based on improved feedstock characteristics, process benefits, and integration aspects. A system concept, “Bio2Fuels”, was suggested and evaluated for low-temperature slow pyrolysis as a way to achieve simultaneous biomass refinement and transport driven CO2 negativity.

Syngas was identified as a very suitable intermediate product for residue streams from biochemical conversion. Resulting syngas composition and quality showed hydrolysis residue as suitable gasification feedstock, providing some adjustments in the feedstock preparation. Gasification combined with torrefaction pretreatment demonstrated reduced syngas tar content. The co-gasification of biogas and wood in a FBG was successfully demonstrated with increased syngas H2/CO ratio compared to wood gasification, however high temperatures (≥1000°C) were required for efficient CH4 conversion. The demonstrated improved feedstock characteristics for torrefied biomass may facilitate gasification of biomass residue feedstocks in a biorefinery. Also, integration of a torrefaction unit on-site at the biorefinery or off-site with other industries could make use of excess low-value heat for the drying step with improved overall thermal efficiency. The Bio2Fuels concept provides a new application for slow pyrolysis. The experimental evaluation demonstrated significant hydrogen and carbon separation, and no significant volatilization of ash-forming elements (S and Cl excluded)  in low-temperature (<400°C) pyrolysis. The initial reforming test showed high syngas CH4 content, indicating the need for catalytic reforming.

The collective results from the present work indicate that the application of thermochemical conversion processes into a biorefinery system, making use of by-products from biochemical conversion and biomass residues as feedstocks, has significant potential for energy integration, increased product output, and climate change mitigation.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2017. s. 67
Nyckelord
Biomass, biorefinery, thermochemical conversion, torrefaction, slow pyrolysis, gasification, process integration, carbon negativity
Nationell ämneskategori
Kemiteknik
Identifikatorer
urn:nbn:se:umu:diva-139839 (URN)978-91-7601-427-1 (ISBN)
Disputation
2017-10-20, N430, Naturvetarhuset, Umeå, 13:00 (Svenska)
Opponent
Handledare
Tillgänglig från: 2017-09-29 Skapad: 2017-09-22 Senast uppdaterad: 2025-02-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Åberg, KatarinaKhwaja, SalikPommer, LindaNordin, Anders

Sök vidare i DiVA

Av författaren/redaktören
Åberg, KatarinaKhwaja, SalikPommer, LindaNordin, Anders
Av organisationen
Institutionen för tillämpad fysik och elektronik
Kemiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 740 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf