The codegree threshold of K_4^-
2017 (Engelska)Ingår i: The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17) / [ed] Drmota Michael; Kang Mihyun; Krattenthaler Christian; Nešetřil Jaroslav, Elsevier, 2017, Vol. 61, s. 407-413Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]
The codegree threshold ex2(n, F) of a non-empty 3-graph F is the minimum d = d(n) such that every 3-graph on n vertices in which every pair of vertices is contained in at least d+ 1 edges contains a copy of F as a subgraph. We study ex2(n, F) when F = K − 4 , the 3-graph on 4 vertices with 3 edges. Using flag algebra techniques, we prove that
ex2(n, K− 4 ) = n 4 + o(n).
This settles in the affirmative a conjecture of Nagle [20]. In addition, we obtain a stability result: for every near-extremal configurations G, there is a quasirandom tournament T on the same vertex set such that G is close in the edit distance to the 3-graph C(T) whose edges are the cyclically oriented triangles from T. For infinitely many values of n, we are further able to determine ex2(n, K− 4 ) exactly and to show that tournament-based constructions C(T) are extremal for those values of n.
Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 61, s. 407-413
Serie
Electronic Notes in Discrete Mathematics, ISSN 1571-0653
Nyckelord [en]
extremal combinatorics, hypergraphs, codegree treshold, flag algebras
Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-144158DOI: 10.1016/j.endm.2017.06.067Scopus ID: 2-s2.0-85026770409OAI: oai:DiVA.org:umu-144158DiVA, id: diva2:1176928
Konferens
EUROCOMB 2017, The European Conference on Combinatorics, Graph Theory and Applications, Vienna, Italy, August 28 - September 1, 2017
Forskningsfinansiär
Vetenskapsrådet2018-01-232018-01-232023-03-24Bibliografiskt granskad