Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A drag force interpolation model for capsule-shaped cells in fluid flows near a surface
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Microbiology, ISSN 1350-0872, E-ISSN 1465-2080, Vol. 164, nr 4, s. 483-494Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We report an interpolation model to calculate the hydrodynamic force on tethered capsule-shaped cells in micro-fluidic flows near a surface. Our model is based on numerical solutions of the full Navier–Stokes equations for capsule-shaped objects considering their geometry, aspect ratio and orientation with respect to fluid flow. The model reproduced the results from computational fluid dynamic simulations, with an average error of <0.15 % for objects with an aspect ratio up to 5, and the model exactly reproduced the Goldman approximation of spherical objects close to a surface. We estimated the hydrodynamic force imposed on tethered Escherichia coli cells using the interpolation model and approximate models found in the literature, for example, one that assumes that E. coli is ellipsoid shaped. We fitted the 2D-projected area of a capsule and ellipsoid to segmented E. coli cells. We found that even though an ellipsoidal shape is a reasonable approximation of the cell shape, the capsule gives 4.4 % better agreement, a small difference that corresponds to 15 % difference in hydrodynamic force. In addition, we showed that the new interpolation model provides a significantly better agreement compared to estimates from commonly used models and that it can be used as a fast and accurate substitute for complex and computationally heavy fluid dynamic simulations. This is useful when performing bacterial adhesion experiments in parallel-plate flow channels. We include a MATLAB script that can track cells in a video time-series and estimate the hydrodynamic force using our interpolation formula.

Ort, förlag, år, upplaga, sidor
Microbiology Society , 2018. Vol. 164, nr 4, s. 483-494
Nyckelord [en]
E. coli, adhesion, Goldman’s approximation, tethered cells, micro-fluidics
Nationell ämneskategori
Annan fysik Annan biologi
Forskningsämne
fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-144499DOI: 10.1099/mic.0.000624ISI: 000438758300007PubMedID: 29509130Scopus ID: 2-s2.0-85045149561OAI: oai:DiVA.org:umu-144499DiVA, id: diva2:1180120
Tillgänglig från: 2018-02-05 Skapad: 2018-02-05 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Ingår i avhandling
1. Digital holography and image processing methods for applications in biophysics
Öppna denna publikation i ny flik eller fönster >>Digital holography and image processing methods for applications in biophysics
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Understanding dynamic mechanisms, morphology and behavior of bacteria are important to develop new therapeutics to cure diseases. For example, bacterial adhesion mechanisms are prerequisites for initiation of infections and for several bacterial strains this adhesion process is mediated by adhesive surface organelles, also known as fimbriae. Escherichia coli (E. coli) is a bacterium expressing fimbriae of which pathogenic strains can cause severe diseases in fluidic environments such as the urinary tract and intestine. To better understand how E. coli cells attach and remain attached to surfaces when exposed to a fluid flow using their fimbriae, experiments using microfluidic channels are important; and to assess quantitative information of the adhesion process and cellular information of morphology, location and orientation, the imaging capability of the experimental technique is vital.

In-line digital holographic microscopy (DHM) is a powerful imaging technique that can be realized around a conventional light microscope. It is a non-invasive technique without the need of staining or sectioning of the sample to be observed in vitro. DHM provides holograms containing three-dimensional (3D) intensity and phase information of cells under study with high temporal and spatial resolution. By applying image processing algorithms to the holograms, quantitative measurements can provide information of position, shape, orientation, optical thickness of the cell, as well as dynamic cell properties such as speed, growing rate, etc.

In this thesis, we aim to improve the DHM technique and develop image processing methods to track and assess cellular properties in microfluidic channels to shed light on bacterial adhesion and cell morphology. To achieve this, we implemented a DHM technique and developed image processing algorithms to provide for a robust and quantitative analysis of holograms. We improved the cell detection accuracy and efficiency in DHM holograms by developing an algorithm for detection of cell diffraction patterns. To improve the 3D detection accuracy using in-line digital holography, we developed a novel iterative algorithm that use multiple-wavelengths. We verified our algorithms using synthetic, colloidal and cell data and applied the algorithms for detecting, tracking and analysis. We demonstrated the performance when tracking bacteria with sub-micrometer accuracy and kHz temporal resolution, as well as how DHM can be used to profile a microfluidic flow using a large number of colloidal particles. We also demonstrated how the results of cell shape analysis based on image segmentation can be used to estimate the hydrodynamic force on tethered capsule-shaped cells in micro-fluidic flows near a surface.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2018. s. 59
Nyckelord
Digital holographic microscopy, image processing, image reconstruction, bacterial adhesion, cell morphology, algorithm development, software design, quantitative measurement, microfluidics, multidisciplinary research
Nationell ämneskategori
Biofysik Datorgrafik och datorseende
Forskningsämne
signalbehandling; teknisk fysik med inriktningen mikrosystemteknik
Identifikatorer
urn:nbn:se:umu:diva-150687 (URN)978-91-7601-915-3 (ISBN)
Disputation
2018-09-07, Naturvetarhuset, N430, Umeå, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-08-17 Skapad: 2018-08-15 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Wiklund, KristerZhang, HanqingStangner, TimAndersson, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Wiklund, KristerZhang, HanqingStangner, TimAndersson, Magnus
Av organisationen
Institutionen för fysik
I samma tidskrift
Microbiology
Annan fysikAnnan biologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 5013 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf