Öppna denna publikation i ny flik eller fönster >>2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]
All of my papers are related to the problem of avoiding and completing an edge precoloring of a graph. In more detail, given a graph G and a partial proper edge precoloring φ of G and a list assignment L for every non-colored edge of G, can we extend φ to a proper edge coloring of G which avoids L?
In Paper I, G is the d-dimensional hypercube graph Qd, a partial proper edge precoloring φ and a list assignment L must satisfy certain sparsity conditions. Paper II still deals with the hypercube graph Qd, but the list assignment L for every edge of Qd is an empty set and φ must be a partial proper edge precoloring of at most d-1 edges. In Paper III, G is a (d,s)-edge colorable graph; that is G has a proper d-edge coloring, where every edge is contained in at least s-1 2-colored 4-cycles, L must satisfy certain sparsity conditions and we do not have a partial proper edge precoloring φ on edges of G. The problem in Paper III is also considered in Paper IV and Paper V, but here G can be seen as the complete 3-uniform 3-partite hypergraph K3n,n,n, where n is a power of two in paper IV and n is an even number in paper V.
Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2019. s. 11
Serie
Research report in mathematics, ISSN 1653-0810 ; 66/19
Nyckelord
Graph coloring, precoloring, list assignment
Nationell ämneskategori
Diskret matematik
Identifikatorer
urn:nbn:se:umu:diva-158343 (URN)978-91-7855-055-5 (ISBN)
Disputation
2019-05-24, MA121, MIT-huset, Umeå, 10:15 (Engelska)
Opponent
Handledare
2019-05-032019-04-242021-09-17Bibliografiskt granskad