Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Biased random k-SAT
Mathematics Institute, University of Warwick,Coventry, UK.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2021 (Engelska)Ingår i: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 59, nr 2, s. 238-266Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The basic random k‐SAT problem is: given a set of n Boolean variables, and m clauses of size k picked uniformly at random from the set of all such clauses on our variables, is the conjunction of these clauses satisfiable? Here we consider a variation of this problem where there is a bias towards variables occurring positive—that is, variables occur negated w.p. 0<p<½  and positive otherwise—and study how the satisfiability threshold depends on p. For p<½ this model breaks many of the symmetries of the original random k‐SAT problem, for example, the distribution of satisfying assignments in the Boolean cube is no longer uniform. For any fixed k, we find the asymptotics of the threshold as p approaches 0 or ½ . The former confirms earlier predictions based on numerical studies and heuristic methods from statistical physics.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2021. Vol. 59, nr 2, s. 238-266
Nyckelord [en]
ombinatorial probability, phase transition, random k-SAT, random constraint satisfaction problem
Nationell ämneskategori
Diskret matematik Datavetenskap (datalogi)
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-147516DOI: 10.1002/rsa.20996ISI: 000618278000001Scopus ID: 2-s2.0-85101442885OAI: oai:DiVA.org:umu-147516DiVA, id: diva2:1203884
Anmärkning

Originally included in thesis in manuscript form.

Detta var en omarbetad, längre version av ett manuskript som ingick i författarens licentiatavhandling. Den tidigare versionen finns i följande post:

http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-121417

This was a revised, longer version of a manuscript which was included in the licentiate thesis from the same author. The previous version can be found in the following post:

http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-121417

Tillgänglig från: 2018-05-04 Skapad: 2018-05-04 Senast uppdaterad: 2023-03-23Bibliografiskt granskad
Ingår i avhandling
1. On random satisfiability and optimization problems
Öppna denna publikation i ny flik eller fönster >>On random satisfiability and optimization problems
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In Paper I, we study the following optimization problem: in the complete bipartite graph where edges are given i.i.d. weights of pseudo-dimension q>0, find a perfect matching with minimal total weight. The generalized Mézard-Parisi conjecture states that the limit of this minimum exists and is given by the solution to a certain functional equation. This conjecture has been confirmed for q=1 and for q>1. We prove it for the last remaining case 0<q<1.

In Paper II, we study generalizations of the coupon collector problem. Versions of this problem shows up naturally in various context and has been studied since the 18th century. Our focus is on using existing methods in greater generality in a unified way, so that others can avoid ad-hoc solutions.

Papers III & IV concerns the satisfiability of random Boolean formulas. The classic model is to pick a k-CNF with m clauses on n variables uniformly at random from all such formulas. As the ratio m/n increases, the formulas undergo a sharp transition from satisfiable (w.h.p.) to unsatisfiable (w.h.p.). The critical ratio for which this occurs is called the satisfiability threshold.

We study two variations where the signs of variables in clauses are not chosen uniformly. In paper III, variables are biased towards occuring pure rather than negated. In paper IV, there are two types of clauses, with variables in them biased in opposite directions. We relate the thresholds of these models to the threshold of the classical model.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2018. s. 10
Serie
Research report in mathematics, ISSN 1653-0810
Nyckelord
Random graphs, k-SAT, satisfiability, coupon collector, random cover time, threshold phenomenon, concentration of measure, combinatorial probability, perfect matching, assignment problem, local graph limit, mean-field
Nationell ämneskategori
Diskret matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:umu:diva-147519 (URN)978-91-7601-875-0 (ISBN)
Disputation
2018-06-01, MA121, MIT-huset, Umeå, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-05-09 Skapad: 2018-05-04 Senast uppdaterad: 2021-09-17Bibliografiskt granskad

Open Access i DiVA

fulltext(607 kB)318 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 607 kBChecksumma SHA-512
3eb1d55d87c90bc0c67787daad7cac7dbc578032e9f024fc991ac714a15d0b9a05821c9865b9e53f0bf3b670f11af8a559fdb4590e99373aca0a0e0fc303096c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Larsson, JoelMarkström, Klas

Sök vidare i DiVA

Av författaren/redaktören
Larsson, JoelMarkström, Klas
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Random structures & algorithms (Print)
Diskret matematikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 349 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 350 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf