Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated alarm and root-cause analysis based on real time high-dimensional process data: Part of a joint research project between UmU, Volvo AB & Volvo Cars
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2018 (Engelska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Today, a large amount of raw data are available within manufacturing industries. Unfortunately, most of it is not further analyzed in search of valuable information regarding the optimization of processes. In the painting process at the Volvo plant in Umeå, adjusted settings on the process equipments (e.g. robots, machines etc.) are mostly based on the experience of the personnel rather than actual facts (i.e. analyzed data). Consequently, time- and cost waste caused by defects is obtained when painting the commercial heavy-duty truck bodies (cabs). Hence, the aim of this masters thesis is to model the quality as a function of available background- and process data. This should be presented in an automated alarm and root-cause system.

A variety of supervised learning algorithms were trained in order to estimate the probability of having at least one defect per cab. Even with a small amount of data, results have shown that such algorithms can provide valuable information. Later in this thesis work, one of the algorithms was chosen and used as the underlying model in the prototype of an automated alarm system. When this probability was considered as too high, an intuitive root-cause analysis was presented. Ultimately, this research has demonstrated the importance and possibility of analyzing data with statistical tools in the search of limiting costs- and time waste.

Ort, förlag, år, upplaga, sidor
2018. , s. 57
Nyckelord [en]
Machine Learning, classification analysis, supervised learning
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-148511OAI: oai:DiVA.org:umu-148511DiVA, id: diva2:1214556
Externt samarbete
Volvo AB
Utbildningsprogram
Civilingenjörsprogrammet i industriell ekonomi
Handledare
Examinatorer
Tillgänglig från: 2018-06-12 Skapad: 2018-06-07 Senast uppdaterad: 2018-06-12Bibliografiskt granskad

Open Access i DiVA

fulltext(23071 kB)443 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 23071 kBChecksumma SHA-512
f771202ff2618dbfc24af87ffd65aea252f0f0f733601d31bdd07fb44f7aeef9b6e7378677b6a48f8199a3aa53cb6b800e1d0be32ea37337572d9bd5425b8643
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Harbs, JustinSvensson, Jack
Av organisationen
Institutionen för matematik och matematisk statistik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 443 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1695 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf